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In this study we fused high-spatial resolution (3.7 m) hyperspectral imagery with 22 pulse/m2 lidar data at the
individual crown object scale to map 29 common tree species in Santa Barbara, California, USA.We first adapted
andparallelized awatershed segmentation algorithm to delineate individual crowns from agridded canopymax-
ima model. From each segment, we extracted all spectra exceeding a Normalized Difference Vegetation Index
(NDVI) threshold and a suite of crown structural metrics computed directly from the three-dimensional lidar
point cloud. The variables were fused and crowns were classified using canonical discriminant analysis. The
full complement of spectral bands along with 7 lidar-derived structural metrics were reduced to 28 canonical
variates and classified. Species-level and leaf-type level maps were produced with respective overall accuracies
of 83.4% (kappa = 82.6) and 93.5%. The addition of lidar data resulted in an increase in classification accuracy
of 4.2 percentage points over spectral data alone. The value of the lidar structural metrics for urban species dis-
crimination became particularly evident when mapping crowns that were either small or morphologically
unique. For instance, the accuracy with which we mapped the tall palm species Washingtonia robusta increased
from 29% using spectral bands to 71%with the fused dataset. Additionally, we evaluated the role that automated
segmentation plays in classification error and the prospects for mapping urban forest species not included in a
training sample. The ability to accurately map urban forest species is an important step towards spatially explicit
urban forest ecosystem assessment.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

As of 2011, more than 50% of all humans live in cities (UN-Habitat,
2011). Cities play an outsized role in driving global climate change
(Schneider, Friedl, & Potere, 2010) and are uniquely susceptible to
climate change impacts. Urban areas suffer from higher temperatures,
poorer air quality, and increased peak flow of stormwater runoff,
when compared to their rural neighbors (Escobedo & Nowak, 2009;
Lee & Bang, 2000; Voogt, 2002). Optimally arranged green infrastruc-
ture in cities can reduce impacts by facilitating reduced urban tempera-
tures, improving air quality, and dampening peak flow (Bolund &
Hunmammar, 1999; Myint, Brazel, Okin, & Buyantuyev, 2010). Urban
trees in particular provide a range of ecosystem services, along with
some disservices (e.g. Lyytimaki et al., 2008), but the magnitude of
service depends on tree species, structure, and locational context
(Escobedo & Nowak, 2009; Manning, 2008; McCarthy & Pataki, 2010,
McPherson, Simpson, Xiao, & Wu, 2011; Simpson, 2002; Urban, 1992).
Presently, the Urban Forest Effects model (UFORE, Nowak et al., 2008)
is commonly implemented in urban areas worldwide to produce city-
wide estimates of urban forest structure, species diversity, and

ecosystem function. However, urban forest inventory, particularly on
private properties, is labor intensive and the results are not spatially
explicit.

Mapping the extents of urban tree canopy using aerial or satellite
imagery is currently operational (MacFaden, O'Neil-Dunne, Royar, Lu,
& Rundle, 2012; McGee, Day, Wynne, & White, 2012). However, these
maps rarely provide information on tree species, age class, or leaf area
index (LAI), which are common prerequisites to estimates of ecosystem
function. Mapping tree species is challenging in urban environments
due to the fine characteristic scale of spatial variation (Welch, 1982)
and potentially very high species diversity. While some space-borne,
broadband sensors (e.g., IKONOS, GeoEye) are capable of achieving
b3 m multispectral spatial resolution, they lack the spectral range and
resolution required to resolve the subtle chemical and structural signa-
tures upon which species discrimination relies (Clark, Roberts, & Clark,
2005). Hyperspectral imagery has proven useful in mapping tree species
at the pixel level based on variability in spectral reflectance at leaf to
crown scales (Boschetti, Boschetti, Oliveri, Casati, & Canova, 2007; Clark
et al., 2005; Dennison & Roberts, 2003; Franke, Roberts, Halligan, &
Menz, 2009; Martin, Newman, Aber, & Congalton, 1998; van Aardt &
Wynne, 2007; Yang, Everitt, Fletcher, Jensen, & Mausel, 2009;
Youngentob et al., 2011). In an urban setting, Xiao, Ustin, and
McPherson (2004) mapped 22 common species in Modesto, California
with 70% accuracy at the species level and 94% accuracy at the leaf-type
(i.e., broadleaf, conifer, palm) level.
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Classification accuracies for pixel-based algorithms in highly mixed
urban landscapes are limited by extreme spectral variation over small
spatial extents. In response there has been increased use of object-
based image analysis (OBIA), which relies on image segmentation
routines to group spectrally similar and spatially proximate pixels into
objects to reduce undesirable noise common in pixel-level results
(Benz, Hofmann, Willhauck, Lingenfelder, & Heynen, 2004; Blaschke,
2010;Myint, Gober, Brazel, Grossman-Clarke, &Weng, 2011). This tech-
nique has been applied with some success to tree species identification
using hyperspectral imagery either through crown-level spectral aver-
aging or pixel-majority classification (Alonzo, Roth, & Roberts, 2013;
Clark et al., 2005; van Aardt & Wynne, 2007; Zhang & Qiu, 2012). In a
suburban setting north of Dallas, Texas, Zhang and Qiu (2012) achieved
a classification accuracy of 69% for 40 tree species using a “treetop-
based” approach. They selected the single highest pixel per crown
object in order to ensure sunlit spectra whenever possible. Alonzo
et al. (2013) showed that for manually delineated urban tree crowns
in Santa Barbara, the pixel majority approach using all crown pixels ex-
ceeding a Normalized Difference Vegetation Index (NDVI) threshold
was effective, especially with limited training data. Their classification
of 15 urban species with Airborne Visible/Infrared Imaging Spectrome-
ter (AVIRIS) data resulted in an overall accuracy of 86%. Nevertheless,
Castro-Esau, Sanchez-Azofeifa, Rivard, Wright, and Quesada (2006),
while producing strong species classification results using leaf-level
spectra, showa linear decline in classification accuracieswith increasing
numbers of species. This suggests that 1) it may not be currently possi-
ble to map all species simultaneously in biodiverse forests and 2)
that expanding the classification feature space with non-spectral data
may be required for significant advances.

Lidar data allow for the generation of a set of crown structural vari-
ables based on either the ranges and intensities of individual pulse
returns or characterization of the full waveform. Lidar data have been
employed frequently to measure forest parameters such as tree height
(e.g., Andersen et al., 2006; Edson & Wing, 2011; Lim, Treitz, Wulder,
St-Onge, & Flood, 2003), biomass (e.g., Asner et al., 2011; Mascaro,
Detto, Asner, & Muller-Landau, 2011; Næsset & Gobakken, 2008;
Popescu, Wynne, & Nelson, 2003; Shrestha & Wynne, 2012), and LAI
(e.g., Morsdorf, Kotz, Meier, Itten, & Allgower, 2006; Solberg et al.,
2009; Tang et al., 2012; Zhao & Popescu, 2009). Classification of trees
using pulse range and intensity metrics has been undertaken at
the leaf type (e.g., Kim, Mcgaughey, Andersen, & Schreuder, 2009;
Ørka et al., 2009; Yao, Krzystek, & Heurich, 2012), genus (e.g., Kim,
Hinckley, & Briggs, 2011), and species levels (e.g., Brandtberg, 2007;
Holmgren & Persson, 2004). Other work has shown that retaining the
full lidarwaveform can provide a set of discriminatory variables derived
from, for example, echo width and amplitude (Heinzel & Koch, 2011;
Vaughn, Moskal, & Turnblom, 2012). Suites of canopy structural vari-
ables (e.g. tree height, crown base height, vertical intensity profiles)
extracted from the lidar point cloud at the individual tree level offer
complementary information to the biochemical and biophysical data
garnered from optical data. However, it has thus far not been demon-
strated that lidar-variables alone are sufficient for discriminating
among large numbers of species in biodiverse environments.

“Fusion” is a ubiquitous term in the remote sensing literature that
generally refers to the combination of multisensor spatial data, at either
the pixel, feature, or decision level (Pohl and Van Genderen, 1998).
Increasingly, lidar and either multispectral (e.g., Holmgren, Persson, &
Söderman, 2008; Ørka et al., 2012) or hyperspectral (e.g., Asner et al.,
2008; Dalponte, Bruzzone, & Gianelle, 2008; Dalponte, Bruzzone, &
Gianelle, 2012; Dalponte, Ørka, Ene, Gobakken, & Næsset, 2014; Jones,
Coops, & Sharma, 2010; Liu et al., 2011; Voss & Sugumaran, 2008)
data are fused together at the pixel or feature level for tree species
classification and quantification of forest inventory parameters
(e.g., Anderson et al., 2008; Clark, Roberts, Ewel, & Clark, 2011; Latifi,
Fassnacht, & Koch, 2012; Lucas, Lee, & Bunting, 2008; Swatantran,
Dubayah, Roberts, Hofton, & Blair, 2011). In some cases the value of

fusion has come from the addition of structural variables (e.g., height,
standard deviation of all height points within a pixel) that are minimal-
ly correlated with spectral bands (Dalponte et al., 2008; Dalponte et al.,
2012; Jones et al., 2010; Voss & Sugumaran, 2008). In others, fusion has
added value indirectly through improved image segmentation and
crown-object creation (Alonzo et al., 2013; Dalponte et al., 2014;
Voss & Sugumaran, 2008; Zhang & Qiu, 2012). However, to the
authors' knowledge, there has beenminimal research focused on im-
proving tree species classification using crown-object level fusion of
hyperspectral imagery and structural metrics extracted directly from
the 3-D lidar point cloud. Moreover, the prospects for mapping an entire,
biodiverse urban forest to the leaf-type level with hyperspectral-lidar
data fusion, have not been evaluated. Finally, there is limited knowledge
of howautomated image segmentation impacts the accuracy of classifica-
tion results in a highly complex urban environment.

The goal of this study is to improve the accuracy of tree speciesmap-
ping in the biodiverse city of Santa Barbara, California, through crown-
object level fusion of AVIRIS (Green et al., 1998) imagery and high
point-density lidar data. This paper builds significantly on the work by
Alonzo et al. (2013) which focused on classifying manually-delineated
tree crowns using hyperspectral imagery. In particular, we now include
lidar-derived structural metrics in classification algorithms and delin-
eate crowns using watershed segmentation. The specific aims of this
paper are:

1) For our urban study area, within crown objects delineated using
watershed segmentation, classify 29 common tree species using
crown-level fusion of hyperspectral imagery and lidar data.

2) Test the extent to which all of the urban forest's canopy can be clas-
sified to the leaf type level using classification functions developed
for the 29 common species. Leaf-type level classification is frequently
sufficient for parameterizing estimates of urban ecosystem function
that are largely mediated by crown structure measurements and
total leaf area.

3) Evaluate the impact of segmentation error on classification accuracy
through comparison of results from automatically delineated and
manually delineated crowns.

4) Isolate particular spectral regions and lidar-derived structural vari-
ables that hold promise for improving discrimination among urban
tree species and leaf types.

Our study helps cities move closer to a spatially explicit accounting
of the common species in their urban forest. Further, it facilitates better
understanding of the spectral and structural contributions to species
discrimination as well as the benefits and errors associated with object-
oriented approaches.

2. Data and methods

2.1. Study area and sample

This study was conducted in downtown Santa Barbara, California
(34.42° N, 119.69° W) (Fig. 1). Santa Barbara is a city of about 90,000
residents located on a coastal plain between the Pacific Ocean to the
south and the Santa Ynez mountains to the north. It has a Mediterra-
nean climate and supports a diversemix of native, introduced, and inva-
sive urban forest species. A spatial database maintained by the City of
Santa Barbara contains one or more specimens from N450 species. In a
Fall 2012 inventory following UFORE protocols, 105 plots were sampled
and 108 species recorded. Despite this diversity, far fewer species
provide the bulk of the city's canopy cover: In Santa Barbara, based on
UFORE and municipal data, we estimate that approximately 70% of
the study area's trees represent over 80% of the city's canopy area yet
comprise fewer than 30 species.

This study's first objective was to map approximately 80% of Santa
Barbara's canopy to the species level by training a classifier on 29 com-
mon species. The 80% canopy cover threshold was chosen based on
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analysis of UFORE-derived cumulative canopy cover distributions in
the cities of Santa Barbara, Washington, DC (Casey Trees, 2010) and
Los Angeles, California (Supplementary material Figure S1; Clarke,
Jenerette, & Davila, 2013). Twenty nine species (Table 1)were ultimate-
ly chosen for their large contributions to canopy cover and our ability to

isolate training crowns (Supplementary material S1). The other 20% of
the canopy (hereafter “less common” species) were modeled as one of
the trained species (hereafter “common” species) and thus classified
only to the leaf-type level. The tree crowns included in this study's train-
ing set (Fig. 1) were selected from: 1) The city's geospatial database

Fig. 1. Study area of downtown Santa Barbara (approximately indicated by red box overlaid on California locator map). Location of sampled trees shown by dots. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

Table 1
The 29 species included in model training. Tree type: B = Broadleaf, C = Coniferous, P = Palm. Canopy area refers to total canopy area by species.

Species
code

Scientific name Tree
type

Stem
count

Canopy area
(m2)

ARCU Archontophoenix cunninghamiana P 62 756
CICA Cinnamomum camphora B 57 5290
CUMA Cupressus macrocarpa C 55 4857
EUFI Eucalyptus ficifolia B 50 4596
EUGL Eucalyptus globulus B 58 9401
FIMI Ficus microcarpa B 56 9006
GEPA Geijera parviflora B 58 2777
JAMI Jacaranda mimosifolia B 76 6609
LIST Liquidambar styraciflua B 65 5081
LOCO Lophestemon confertus B 66 3465
MAGR Magnolia grandiflora B 63 7425
MEEX Metrosideros excelsa B 62 1581
OLEU Olea europaea B 81 6042
PHCA Phoenix canariensis P 99 5294
PICA Pinus canariensis C 73 4675
PIPI2 Pinus pinea C 76 11,387
PIUN Pittosporum undulatum B 96 6166
PLRA Platanus racemosa B 71 6933
POGR Podocarpus gracilior B 62 6214
PYKA Pyrus kawakamii B 55 3404
QUAG Quercus agrifolia B 108 8895
SCMO Schinus molle B 53 1971
SCTE Schinus terebinthifolius B 71 5863
STSI Stenocarpus sinuatus B 51 1112
SYAU Syzygium australe B 67 3982
SYRO Syagarus romanzoffiana P 130 2705
TISP Tipuana tipu B 58 7874
ULPA Ulmus parvifolia B 50 6370
WARO Washingtonia robusta P 87 1220
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(1679 stems); 2) UFORE plots (286 stems);and 3) one additional park
(Alameda Park) spanning two city blocks (339 stems). The species
of each crown selected from the city's database was confirmed using
Google Street View. The 2nd set was collected by the authors and in-
cluded species identification and all UFORE-prescribed stem, crown,
and positional measurements (Field methods in detail: https://sites.
google.com/site/ucsbviperlab/uforemethods). The third set was also
collected by the authors and each tree was identified to the leaf-type
level with stem position precisely recorded using differential GPS and
a total station. The primary utility of this final set was to offer a complex
set of overlapping crownsonwhich to validatewatershed segmentation
algorithms. The total number of stems included in this analysis is 2304,
comprising approximately 100 species. This number is approximate
because not all species in Alameda Park were identified beyond their
leaf type. Common species make up 2016 of the 2304 total crowns in
the sample and 91% of the total crown area (165,887 m2).

2.2. Data

2.2.1. Lidar data and processing
Waveform lidar data were collected in August of 2010 with a

helicopter-mounted Riegl Q560 laser scanner. The lidar data were
georeferenced with two local differential GPS stations and stored in
the UTM coordinate system (Zone 11 N, NAD83). The waveform was
discretized using standard Riegl processing procedures to an average
last-return point density of 22 points/m2 across the study area with
additional returns available in high vegetation. Height values on flat
surfaces were evaluated to be precise to within 2 cm (Supplementary
material S2). The point cloud was classified to ground, building, and
vegetation using LAStools (LAStools v111216, http://lastools.org) with
minimal adjustments to default settings. Buildings were discriminated
from trees with 98% accuracy and there was no confusion between veg-
etation taller than 2 m and ground. A bare earth digital terrain model
(DTM), and two canopy height models (CHM), one for buildings and
the other for vegetation, were generated at 0.25 m pixel resolution. In
this research we use the term “canopy height model” to refer to height
above bare ground.

2.2.2. AVIRIS imagery and processing
Two AVIRIS flight lines spanning the study area were acquired from

a Twin Otter aircraft flying at approximately 4000 m above sea level on
November 1, 2010. The scene acquisition times were centered on 11:50
and 14:20 Pacific Standard Time with solar zenith angles of 50.5° and
54.1°, respectively. The 224-channel AVIRIS instrument samples up-
welling radiance between 365 and 2500 nm with a field of view of 34°

and instantaneousfield of view of 1mrad (Green et al., 1998). The resul-
tant ground instantaneous field of view was 3.7 and 3.4 m for the two
flight lines, respectively.

AVIRIS products are delivered after correction for aircraft motion
and orthorectification using digital terrain. Surface reflectance was re-
trieved on each flight-line using ATCOR-4 (Richter & Schlaepfer,
2002). Bands within the following spectral regions were discarded
due to water vapor contamination or low signal-to-noise ratios: 365–
385 nm, 1323–1432 nm, 1811–2007 nm, and 2446–2496 nm. After
confirming negligible reflectance bias between the two images, a mosa-
ic was created (3.7m) and registered to the gridded lidar data (0.25m).
The AVIRIS data were warped using Delaunay triangulation based on
137 ground control points and resampled using nearest neighbor re-
sampling. The average root mean square error (RMSE) in the alignment
cannot be calculated automatically when Delaunay triangulation is
employed. Visual assessment suggests that the error was less than one
AVIRIS pixel.

2.3. Crown segmentation

A general overview of the segmentation process along with the full
methods workflow employed for this study is shown in Fig. 2. In short,
tree canopy was isolated from abiotic scene components and low vege-
tation primarily based on the point cloud classification completed in
LAStools. Additional refinement was conducted using morphological
opening, closing, thickening, and majority filtering on the gridded
DTM and CHMs. This allowed for removal of most power lines, isolated
vegetation canopies b1m2, and other image noise and resulted in a 0.25
m binary canopy image.

Building on themethods of Chen, Baldocchi, Gong, and Kelly (2006),
marker-controlled watershed segmentation (Digabel & Lantuéjoul,
1978) was chosen to isolate individual tree crowns on the CHM. Addi-
tional background information on the watershed algorithm may
be found in the Supplementary material (S3). For this project, we
combined twowatershed segmentation routines. The first was executed
on an inverse distance transformed, binary canopy image, where local
minima were marked at crown locations furthest from canopy edges.
The second was executed on an inverted canopy maxima model
(CMM) where markers were imposed in locations corresponding with
maximum tree height. The second routine was enacted on each seg-
ment produced by the first routine thus further subdividing the initial
segments. To create a CMMweusedUFOREdata to establish a local, em-
pirical relationship between tree height and canopywidth (Supplemen-
tary material S4). This linear model was used to establish a variable
search window size for local crown maxima based on the modeled

Fig. 2. Workflow diagram for data preprocessing, crown delineation via watershed segmentation, data fusion, and classification. White boxes are processes and gray boxes are data
products. AVIRIS = airborne visible infrared imaging spectrometer, CSM = canopy surface model, DTM = digital terrain model, CMM = canopy maxima model, NDVI = normalized
difference vegetation index, CDA = canonical discriminant analysis.
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tree width. As an input to watershed segmentation, this method is con-
sidered an improvement over use of a CHMbecause it ismore likely that
only legitimate tree tops will be marked (Chen et al., 2006). However,
the relationship between tree height and width in Santa Barbara's
urban forest, irrespective of species was relatively weak (r2 = 0.38).

Segmentation accuracy was estimated by calculating the ratio of
field-measured stems contained in exactly one segment to the sum of
the total number of stems and the number of segments containing
zero stems. It was beyond the scope of this study to evaluate the areal
accuracy of the segmentation. For further processing details and associ-
ated Matlab code relating to the watershed segmentation and CMM
generation we refer the reader to Supplementary material S4.

2.4. Spectral and structural feature extraction

The following sections describe how the spectral and structural var-
iables were generated from crown-level segments overlaid on the
AVIRIS imagery and the lidar point cloud (Fig. 3). These variables were
then fused and used to generate the classification models. Multiple
AVIRIS spectra were extracted for each crown and a single set of 28
structural metrics were computed from each watershed-crown clipped
point cloud. Section 2.5 on data fusion will discuss how these variables
were combined for input into classification algorithms.

2.4.1. Extraction of spectra from AVIRIS imagery
Prior to extraction of spectra, the AVIRIS image was resampled from

3.7 m to 1 m resolution using nearest neighbor resampling. While this
created redundant spectra, it was necessary to ensure that spectral in-
formation from valid 3.7 m canopy pixels located on segment edges
was included in the analysis. Spectra were extracted from each crown
segment (Fig. 3) using a variable NDVI (Rouse, Haas, Schell, & Deering,
1973) threshold to reduce contamination by impervious surface, soil,
or non-photosynthetic vegetation spectral information. The average
NDVI for all crowns was 0.61. Therefore, the initial extraction threshold
was set to 0.6. If no pixels in a given crown met that criterion, all pixels
above anNDVI of 0.5were extracted. If nopixelsmet this second thresh-
old, the single pixel with the maximum NDVI value was selected
(Alonzo et al., 2013). All redundant spectra in a given crown segment
were eliminated prior to classification. For our sample of 2304 crowns,
13,611 spectra were extracted with a median of 4 unique spectra
per crown.Many of the species included in this study have small crowns
that fully contain only one or two 3.7 m pixels. As such, 23% of

crowns were represented in the classification stage by only one unique
spectrum.

2.4.2. Extraction of structural metrics from lidar data
The lidar point-cloud subset associated with each tree crown was

extracted from the scene tiles so that each crown could be processed in-
dividually (Fig. 3). This strategy allows for arbitrarily large tree crown
datasets to be processed either in serial or with simple parallelization.
Building upon previous work (e.g., Holmgren & Persson, 2004; Kim
et al., 2009), we created 28 structural variables (Table 2). These metrics
can be roughly categorized as relating to crown height (h), crown
widths at selected heights (w), ratios of crown heights to widths at se-
lected heights (hw_rat), direct measures of return intensity through
the crown (int), distributions of intensity through the crown (int_dist)
and crown porosity measured by return penetration into the crown
(cp). Details and Matlab code relating to the computation of these vari-
ables can be foundwith the Supplementarymaterial (S5).While overall
correlation among variables was limited, there were several groupings
exhibiting Pearson's Product Moment Coefficients (r) greater than
0.80 (Supplementary material S5, Table S1). In order to exclude corre-
lated variables and to choose the most effective variables for species
separability, forward feature selection (FFS) was employed.

2.4.3. Forward feature selection (FFS)
FFS is a method used to reduce a high-dimensional dataset that may

contain redundant discriminating variables (Hoffbeck & Landgrebe,
1996). The one variable that best discriminates among classes is first
added to the classification model based on its ability to minimize the
model's misclassification rate (MCR). Each remaining variable is
sequentially tested to assess which will, when combined with those al-
ready included, offer the greatest marginal decrease in MCR. Alonzo
et al. (2013) previously showed that a reduced set of spectral variables
did not yield classification accuracies higher than the full complement
of 178 bands and performed no better computationally than a reduced
set of canonical variates. Thus, for purposes of improvingmodel classifi-
cation accuracy, only lidar variables were winnowed for further use
using FFS. However, it is also an objective of this research (aim #4) to
explore the contributions of different spectral regions to species separa-
bility in an urban forest. As such, each spectral band's unique contribu-
tion to separability was evaluated based in-part on frequency of that
band's selection. A more general measure of separability, assessed as
the ratio of among class sums of squares to within class sums of squares
(F-ratio; Clark et al., 2005), was also employed to isolate useful spectral

Fig. 3. Top row: Multiple AVIRIS spectra extracted from each of three typical watershed crowns. The greenmask highlights pixels with NDVI N 0.6. The three example crowns are: a) PHCA
(Phoenix canariensis), a palm; b) LOCO (Lophostemon confertus) a broadleaf evergreen; and c) PICA (Pinus canariensis), a conifer. Bottom row:Watershed crown point-cloud extractionwith
selected structural metrics. Black lines indicate crown base andmax heights. Red line is mean crown height. Dark blue is median height of returns in crown. Orange and violet show 75th
and 90th percentile heights as well as widths at those heights.
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regions and categories of structural metrics (e.g. all variables related to
height).

To explore the sensitivity of the structural variables to crown seg-
mentation error, FFS was run on both manually delineated crowns
(hereafter manual crowns) and watershed segments (hereafter water-
shed crowns). FFSwas run on each set 100 timeswith crowns randomly
partitioned each run into training and validation sets tomitigate the im-
pact of crown variability in the sample. The seven structuralmetrics that
were chosen using manual crowns in more than 30% of the runs and
that demonstrated minimal intercorrelation were retained for further
use. Accordingly, the 7 most-frequently selected metrics exhibiting
low correlation were chosen for the watershed crowns (Table 2).

2.5. Data fusion and classification

2.5.1. Fusing spectral and structural data at the crown level
In this study, themajority of tree crowns containedmultiple, unique

spectra meeting the 0.6 NDVI threshold. However, there was only one
set of structural metrics extracted per crown (Fig. 3). Alonzo et al.
(2013) demonstrated that retaining multiple pixels per crown and
assigning a class to the crown object using a pixel majority (“winner-
take-all”) approachwasmore accurate than classification using a single,
crown-mean spectrum. As such, for each crown, we chose to replicate
the set of structuralmetrics to correspondwith the number of extracted
spectra. The resulting data matrix for manual crowns contained 12,773
rows and 206 columns, where each row represents a unique spectrum
and each column contains either one of 178 spectral bands or one of
28 structuralmetrics. The same structurewas created for thewatershed
crowns but with 13,317 rows.

2.5.2. Canonical discriminant analysis (CDA)
All classifications in this study were conducted using canonical var-

iates in a linear discriminant analysis (LDA) classifier. LDA has proven

useful previously in remote sensing research for separating highly over-
lapping classes in (e.g., Clark et al., 2005; Pu, 2009; Yu, Ostland, Gong, &
Pu, 1999). In LDA, classification equations are formulated based on
the pooled within-class covariance matrix of the set of independent
variables. An observation is assigned to the class with the highest classi-
fication function score (Duda & Hart, 1973). In canonical discriminant
analysis one replaces p original variables with up to g − 1 derived ca-
nonical variates, where g is the number of classes (i.e., 29 tree species;
Klecka, 1980). Whereas principal components analysis (PCA) and min-
imum noise fraction (MNF) summarize the total variability among the
set of independent variables, the canonical rotation summarizes the be-
tween class variance among g classes. The derived canonical discrimi-
nant functions are linear combinations of the original variables where
the coefficients maximize the between-group separation. Data reduc-
tionwith this technique has been successfully applied to remote sensing
classification problems including urban tree species discrimination
(Alonzo et al., 2013; Pu & Liu, 2011; Zhao & Maclean, 2000). Compared
to LDA on p original variables, CDA dramatically improves computation-
al performance and, in the case of limited training data, can avoid the ill-
posed problem where the number of variables is greater than the
number of observations.

2.5.3. Classification candidate sets
The primary goal of this research was to assess the accuracy with

which we could map tree species in a heterogeneous urban forest
using fused hyperspectral and lidar data. We attempt to map 29 com-
mon species that comprise much of Santa Barbara's canopy area and
provide the majority of urban-forest derived ecosystem services. We
acknowledge that it is currently impossible to train a classification algo-
rithm on all species present in an urban area. Thus, we trained our CDA
classifier to label all crowns as one of the 29 common species. At the
leaf-type level, the classification was deemed successful when a
crown was labeled as a common species with a matching leaf type.
For example, if a Quercus suber (less common species) was classified
as Quercus agrifolia (common species) then the leaf-type classification
was correct.

In order to separately assess classification accuracy for the 29 com-
mon species and the ~70 less common species we subdivided the
2304 total crowns into the four overlapping sets listed below (each cor-
responding research aim from the Introduction section is also noted):

1) Accuracy for mapping 29 common species (2016 crowns) to the
species level (aims #1 & #3)

2) Accuracy for mapping same 29 common species to the leaf-type
level (aims #2 & #3)

3) Accuracy for mapping ~70 less common species (288 crowns) to the
leaf-type level (aims #2 & #3)

4) Accuracy for mapping ~100 total species (2304 crowns) to the leaf-
type level (aims #2 & #3)

2.5.4. Variable combinations
Each candidate set listed in Section 2.5.3 was classified using four

different variable subsets. The purpose of adding and holding out vari-
ables linkswith research aim#1:we seek to assess the respective values
of hyperspectral data, lidar data, and object-level fusion of both in
classification accuracy at the species and leaf-type levels. Prior to classi-
fication, for the sake of computational efficiency and methodological
consistency, each variable combination was reduced to the maximum
number of canonical variates with significant discriminating power
(α = 0.05). The rotated variable sets used to generate classification
equations were thus:

1) All hyperspectral bands (178) and all lidar-based structure variables
(28) reduced to 28 canonical variates (hereafter: CDA-full).

2) All spectral bands and the subset of 7 lidar variables selected using
FFS, reduced to 28 canonical variates (CDA-7fuse).

Table 2
Lidar-derived structural variables. Bold entries were selected for inclusion in classification
models for watershed crowns.

Variable Description

h_1 Max crown height
h_2 Median height of returns in crown
h_3 Crown surface height: 0.25 m spatial resolution
h_4 Crown surface height: 1 m spatial resolution
h_5 Crown base height
w_1 Crown width at median height of returns in crown
w_2 Crown width at 50th percentile height
w_3 Crown width at 75th percentile height
w_4 Crown width at 90th percentile height
hw_rat_1 Ratio of crown length to tree height
hw_rat_2 Ratio of crown height to width: median height
hw_rat_3 Ratio of crown height to width: 90th percentile height
hw_rat_4 Ratio of crown height to width: 75th percentile height
hw_rat_5 Ratio of width at 90th percentile height to mean height
hw_rat_6 Ratio of N-S width to E-W width
int_1 Average intensity above median height
int_2 Average intensity belowmedian height
int_3 Crown surface intensity: 0.25 m spatial resolution
int_4 Crown surface intensity: 1 m spatial resolution
int_dist_1 Crown surface intensity/overall average crown intensity
int_dist_2 Skewness of intensity distribution through crown
int_dist_3 Surface intensity (0.25 m)/surface intensity (1 m)
int_dist_4 Return intensity above median crown height/below
cp_1 Surface heights (0.25 m)/surface heights (1 m)
cp_2 (Mean crown height - median height of returns)/crown height
cp_3 Count of returns in 0.5 m vertical slice at 90th

percentile height divided by width at that height
cp_4 Count of returns in 0.5 m vertical slice at mean crown height

divided by width at that height
cp_5 Count of returns in 0.5 m vertical slice at median height of

crown returns divided by width at that height
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3) All hyperspectral bands (178) reduced to 28 canonical variates
(CDA-spec).

4) Seven FFS-selected lidar bands reduced to 5 significant canonical
variates (CDA-lid).

2.5.5. Classification approach
Of the 2304 crowns included in this study, 25 manually delineated

crowns fromeach of the 29 common species, 725 in total, were random-
ly selected and permanently set aside for model training, leaving 1579
for testing at the leaf-type level and 1291 for testing at the species
level. It is necessary to train an object-level classification model using
manually delineated crowns in order to assure that the full segment
area is composed of one and only one known species (Dalponte et al.,
2014). The set of watershed crowns that spatially aligned with the
725 manual crowns was also excluded from the testing to ensure dis-
joint training and test sets. Ultimately, the 1579 manual crowns and
the spatially coincident set of watershed crowns were each classified.
The manual crowns were classified in order to evaluate the potential
classification errors associated with automatic segmentation (aim #3).

To accommodate the dataset's high within-species structural and
spectral variation and so to minimize the impact of outlier crowns on
discriminant function generation, the 725 training crowns were
subsampled with replacement for each of 50 model runs (mr). That is,
for each model run, the discriminant functions were generated using
(29 species) × (20 crowns/species) × (an average of 4 spectra per
crown) = 2320 fused spectra. Bootstrapping over more model runs
(mr = 100) was also investigated but model stability was deemed
adequate with mr = 50.

In each model run, discriminant functions were generated based on
the current subset of trainingpixels. This set of 28 (g− 1) functionswas,
in turn, multiplied through the run's training and testing datasets to
produce the canonical variates. Pixel level LDA classificationwas carried
out on the test set of canonical variates. Upon completion of eachmodel
run, a species label was assigned to each crown based on the pixel ma-
jority classification. After completion of all 50 runs, the mode crown-
level result was calculated and retained for final map creation and accu-
racy assessment. Pixel-level classifications were also retained for com-
parison with results from object-oriented approaches.

Thefinal classifications for the 1579manual crowns and the spatially
coincident watershed segments were mapped in a GIS. A manually
delineated ground-reference map with species information for the 29
common species and leaf-type information for the less common species
was used for spatial validation.Watershed crown accuracywas assessed
only on a canopy-area basis by spatially intersecting the validation map
with the classified segments. Percent correctly classified canopy area
has been chosen in lieu of the number of correctly classified stems as
the primary method for reporting results for two reasons: First, from
an urban forest and ecosystem services management perspective it is
more important to gather detailed information on species dominant
in the local canopy. Second, it is not feasible to conduct stem-count
accuracy assessment when the unit of analysis is the potentially-
misaligned crown segment. Still, to better understand the utility of
lidar for classifying smaller crowns stem count accuracy was assessed
for manual crowns.

3. Results

3.1. Crown segmentation accuracy

Assessed against field observations, 83% of the watershed segments
contained a single tree stem indicating overall good agreement
(Table 3). However, the segmentation accuracy when evaluating only
trees from UFORE plots or from Alameda Park decreased to 55%. This
is because Alameda Park, in particular, is a highly complex urban forest
setting, with significant crown overlap among trees of all sizes and spe-
cies (Fig. 4). In this type of environment, as evident in Fig. 4, there is

clear omission error. This is likely because the window size of the
CMM was determined based on a weak relationship between tree
height and width. It is particularly noticeable in this figure that the
widths of tall but slender palm trees were not modeled well leading
to inclusion of neighboring stems in their segments. Still, evaluated
against segmentation using the CHM, there was a small overall im-
provement in segmentation accuracy (1%). The improvement may be
more pronounced in densely forested areas but this was not evaluated.

3.2. Forward feature selection of structural variables and spectral bands

Using the cross-validated misclassification rate, 7 variables were se-
lected for classifyingmanual crowns. The samenumberwas selected for
watershed crowns. Six of those variables appear in both selection sets,
perhaps indicating that watershed crowns and manual crowns can be
classified using the same set of structural metrics (Fig. 5). The only
variables differing between the two sets were h_1 (max crown height)
and h_2 (median height of returns in crown). For simplicity, and given
strong intercorrelation, all further analysis was conducted using h_2
and the six structural variables selected for bothmanual andwatershed
crowns. Overall, variables related to tree height and return intensity
stand out with respect to their high between-class to within-class vari-
ance as quantified by the normalized F-ratio. When taking variable
intercorrelation into account, one heightmetric (h_2), onewidthmetric
(w_1), one height-to-width ratio metric (hw_rat_2), two intensity met-
rics (int_2 and int_3) and two crown porosity metrics (cp_1 and cp_3)
were selected in more than 30% of the watershed crown model runs
(Fig. 6). That the set of variables selected for each set of objects is nearly
identical may highlight the success of segmenting an image largely
comprising street trees. It may also indicate that the selected variables
are robust to minor aberrations in morphology.

Spectral bands were chosen most consistently from the visible
region of the spectrum (VIS, 394–734 nm; Fig. 6). This corresponds
with an F-ratio that is relatively high from 400 nm until the red edge
at approximately 700 nm. In particular, bands were selected surround-
ing the green peakbetween 520 and 590nm. Selection frequency in that
region was driven by discriminatory power and also by relatively low
correlation with neighboring bands in the VIS as well as with bands in
the shortwave infrared 2 (SWIR2, 2018–2425 nm; Supplementary ma-
terial S6). The near infrared region (NIR, 744–1313 nm) displayed low
F-ratios and yielded one band selected with particular frequency in
the liquid water absorption feature centered on 1197 nm. The short-
wave infrared 1 region (SWIR1, 1443–1802 nm) and SWIR2 regions
yielded high F-ratios but only SWIR1 held bands selected in more than
30% of model runs. The lack of band selection from SWIR2 may be a
result of high overall correlation with the VIS (r = 0.84) and the
SWIR1 (r = 0.83).

3.3. Classification results

3.3.1. Classification of the 29 common species
The CDA-7fuse variable combination yielded the highest overall

species-level classification accuracy (83.4% of canopy area, kappa =
82.6) for watershed crowns containing common species (Fig. 7a).
Species-level classification accuracy with only hyperspectral data
(CDA-spec) was 79.2%. Lidar data only (CDA-lid) yielded an accuracy of
32.9%. The best fused result using the manual crowns was 85.4%, sug-
gesting minimal impact on classification accuracy by segmentation
error (Fig. 8). These object-level results compare favorably to 68%

Table 3
Segmentation accuracy. In bold: 1960 stems were appropriately placed in one watershed
crown. Eighty-five segments were without stems.

Stems in segment 0 1 2 3 4 5 6 7 8
Segment count 85 1960 75 27 10 5 1 1 1

76 M. Alonzo et al. / Remote Sensing of Environment 148 (2014) 70–83



pixel-level accuracy in which a single crown could contain several
differently classified pixels. The species map accuracy provided by the
best fused model (CDA-7fuse) was only 4.2 percentage points (pp)
better than the spectral-only model (CDA-spec), but there was signifi-
cant variation when considering the accuracies of individual species
(Table 4, Fig. 9; for a larger version of Table 4 with full botanical
names see Supplementary material S7).

Large, dense crowned species such as Ficus microcarpa (FIMI) were
classified well by spectral data alone with an averaged user's and
producer's accuracy of 97% (Table 4). Small broadleaf crowns like
Stenocarpus sinuatus and Metrosideros excelsa were poorly classified by
spectral data with average accuracies of 24% and 29% respectively.
Small crowned species overall were poorly classified by CDA-spec and
better classified by CDA-7fuse (Fig. 9). The classification accuracy of spe-
cies with the 7 smallest crown sizes increased by an average of 17 pp
with incorporation of lidar data. Palm species (ARCU, PHCA, SYRO,
WARO) were classified using CDA-spec with 43% accuracy and by CDA-
7fuse to 63%. Conifer species (CUMA, PICA, PIPI2) were classified with
84% accuracy using CDA-spec and 85% accuracy with CDA-7fuse. The re-
maining 22 broadleaf species were classified with 73% accuracy with
CDA-spec and improved to 78% accuracywith CDA-7fuse. Several species
were classifiedworse using the CDA-7fusemodel. Specieswhose accura-
cies declined by more than 1 pp included: OLEU, PICA, PHCA, LOCO,
SCMO, and STSI.

To further determine the value of adding structural metrics to spe-
cies classification, we evaluated the success of each variable combina-
tion in terms of stem count accuracy. This implies a result that is
equally weighted across all species regardless of crown size and could
relate to a goal of better understanding the diversity and spatial ar-
rangement of species throughout a city. Stem count accuracy could
only be assessed using manual crowns. The stem accuracy with the
CDA-spec model was 63.0% and increased to a maximum of 71.5% with
the CDA-7fuse model.

3.3.2. Classification to the leaf-type level
Given the 29 common species, the CDA-7fuse model reached 93.5%

leaf-type accuracy on watershed crowns and 95.7% accuracy onmanual
crowns (Fig. 7b). For the same crowns, lidar alonewasmuchmore effec-
tive at the leaf-type level than at the species level reaching 78.1% accu-
racy on watershed crowns. Across all (~100) species, CDA-full achieved
amapping accuracy of 87.9% to the leaf-type level (Fig. 7c). Whenmap-
ping just the set of ~70 less common species, the accuracies decreased
substantially (Fig. 7d). CDA-full mapped watershed segments contain-
ing less common species with 59.1% accuracy.

4. Discussion

4.1. Object oriented approach

Within a single tree crown, leaf-level spectral reflectance may
vary considerably as a function of biochemistry and water content
(Cochrane, 2000; Ustin et al., 2009). In a given AVIRIS pixel there is
further within-class spectral variability driven by canopy architecture,
exposure of woody biomass, and exposure of underlying substrate
(Asner et al., 2008; Clark et al., 2005; Roberts et al., 2004). This variabil-
ity potentially manifests in a classification result as a single tree crown
containing pixels labeled asmultiple species. The problem is exacerbat-
ed at fine-spatial resolutions since a given pixel's spectral response
may deviate significantly from the crown mean spectrum. Our study
reaffirms the utility of object-level analysis for relatively fine resolution
(3.7m) hyperspectral imagery. The overall accuracy formapping the 29
common species using pixels was 68% and increased to 79% using only
spectral information but with pixel majority aggregation at the crown-
object level. This increase in accuracy at the object level is in line with
previous research: van Aardt andWynne (2007), classifying 3 pine spe-
cies from AVIRIS imagery, improved their single pixel results by 20 pp
(from 65% to 85%) using a 3 × 3 window to compute average spectra
prior to classification. Clark et al. (2005) found that, on average, 10%
of pixels in each correctly labeled crown were misclassified.

Fig. 4. Subset of Alameda Park lidar canopy height model shaded by height. Watershed
segments and field-measured stems. Note the undersegmentation in the densely vegetat-
ed southwest corner.

Fig. 5. Column data show the number of times (out of 100model runs) that each structural variable was selected using forward feature selection (FFS). The black diamonds represent the
normalized F-ratio for each variable. The dark gray vertical stripes indicate that a variable was selected for use in classification of watershed crowns.
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4.2. Contribution to classification: spectral regions and features

In correspondence with previous research, the hyperspectral imag-
ery in our fusion study was the primary driver of classification accuracy
(Fig. 7; Dalponte et al., 2012; Jones et al., 2010; Voss & Sugumaran,
2008). Alonzo et al. (2013) showed that AVIRIS bands spanning the en-
tire solar-reflected region (394 to 2425 nm) are required for accurate
classification of urban tree species but that the VIS is particularly impor-
tant. With 29 urban species, this study reconfirms previous research
highlighting the discriminatory power and relatively unique spectral
information contributed by green peak bands surrounding 560 nm
(Fig. 6; Alonzo et al., 2013; Castro-Esau et al., 2006; Pu, 2009). Bands
in the green peak region are commonly related to the expression of xan-
thophyll cycle pigments (Ustin et al., 2009). Chlorophyll absorption
regions near 430 and 642 nm were also repeatedly included. We note
a continuation of bands selected in N30% of runs (though a diminution
of the F-ratio's value) along the red edge where spectral slope and rela-
tive spectral reflectance have been previously employed to discriminate
tropical rain forest (Cochrane, 2000) and urban (Pu, 2009; Pu &
Landry, 2012) tree species. In contrast to the results of Clark et al.
(2005), we find limited discriminatory value in the near infrared
(NIR, 744 to 1313 nm) range. It is possible that in their tropical
rainforest study area they encountered greater between-class diversity
with respect to phenology, LAI, and water status. Our results do corre-
spond to those of Dalponte et al. (2012) who found that the NIR region
was poorly suited for discrimination due to very high within-class var-
iance. In our study, the one frequently selected band in the NIR was the
prominent liquid water absorption band at 1197 nm. The two most

frequently selected bands overall (1672 and 1722 nm) were in the
shortwave infrared (SWIR1) region spanning 1443 to 1802 nm. This
likely corresponds to species separability driven by variable lignin and
cellulose content found in foliar and non-photosynthetic plant matter
(Kokaly, Asner, Ollinger, Martin, & Wessman, 2009). The shortwave in-
frared region (SWIR2) from 2018 to 2425 nm offered little in terms of
marginal separability here. A high F-ratio indicates potential utility in
discrimination but no bands were selected using FFS more than 30% of
the time. This may be a product of consistently high sample LAI and
leaf water content dampening the viability of lignin-cellulose absorp-
tion features (Kokaly et al., 2009). It may also be a product of high
correlation among SWIR2, SWIR1, and VIS bands.

4.3. Contribution to classification: structural metrics

The selection of particular structural metrics improved classification
accuracy compared to retention of all lidar variables by 2.6 pp, though
this difference was not tested for statistical significance (Fig. 7a).
Tree height is the single most common lidar variable used in tandem
with spectral information as a means to improve classification results
(Dalponte et al., 2008; Jones et al., 2010; Koetz, Morsdorf, van der
Linder, Curt, & Allgöwer, 2008). This is due in part to its clear utility in
facilitating differentiation among spectrally similar tree species but
also because it is simple to measure at either the pixel or crown-
object scale and perhaps because it is robust to imperfect image
segmentation. Our study also found height metrics to be the most
important structural variables based on normalized F-ratio (Fig. 5). By
the same measure, the second most important variable category

Fig. 6. Column data show the number of times (out of 100model runs) that each spectral band was selected using forward feature selection (FFS). The black line is the normalized grand
mean spectrum for all pixels from common (29) species. The dashed line is the normalized F-ratio for each band.

Fig. 7. Canopy area mapping accuracy. Light gray bars show classification accuracy for watershed crowns while darker bars show the improvement when using manual crowns.
(a) Species-level accuracy by model for classifying the 29 common species. (b) Leaf-type level accuracy by model for the 29 common species. (c) Leaf-type level accuracy for mapping
all (~100) species. (d) Leaf-type level accuracy for mapping the ~70 less common species.
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contained return intensitymetrics. In particular int_2 (average intensity
below median height of returns in crown) likely describes the arrange-
ment of leaves and branches in a crown's interior while int_3 (crown
surface intensity: 0.25m spatial resolution)may characterize leaf reflec-
tance values along the crown surface (Kim et al., 2009). A previous
study found standard deviation of crown intensity values to be the
2ndmost valuable variable (Holmgren & Persson, 2004). They postulat-
ed that this metric differentiates densely foliated crowns from those

with larger internal gaps. A third grouping of unique variables was
those related to crown widths at various heights. Variable w_1 (crown
width at median height of returns in crown) may describe crown mor-
phology in a manner useful for separating upright growth forms from
spreading forms. Holmgren & Persson (2004) also found that growth
form gave rise to important discriminatory variables. They included
segp, a summary statistic relating to the shape of a parabola fit to the
surface of their study crowns, in their final, successful, classification of
two conifer species. Finally, we speculate that cp_1 (surface heights in
0.25 m grid divided by surface heights in 1 m grid) and cp_3 (count of
returns in 0.5 m vertical slice at 90th percentile height divided by
width at that height) are two ways to measure crown porosity.

It has been shownpreviously that structuralmetrics that are ratios of
absolute metrics (e.g. hw_rat_3: ratio of crown height to width: 90th
percentile height) are useful for species discrimination because they
are more invariant to life stage and can capture between-species vari-
ability in crown morphology (Holmgren & Persson, 2004; Kim et al.,
2011). Our urban forest study did not corroborate these findings. The
derived structural variables in the set hw_rat were purposed to crown
form description. However, they offered very limited value to species
separability compared to their absolute crown-width analogs. Similarly,
the int_dist family of variables was created out of the supposed need to
normalize for uncalibrated intensity values but also offeredminimal dis-
criminatory power. We suggest that ratio metrics were less valuable to
this study because the sample set of tree crownswasmostlymature and
within-class variance for absolute metrics such as heights and widths
may have been kept sufficiently low through proactive urban forest
management (e.g. pruning, training).

4.4. The impact of segmentation on classification accuracy

The impact of imperfect segmentation on classification accuracywas
minimal. The decrease in accuracy of the CDA-7fuse classifier when
moving from manual crowns to watershed crowns was only 2.0 pp.
This is likely the case for several reasons: 1) In this urban study area,
the segmentation algorithm successfully isolated 83% of the trees. This
is, in part, due to a sample set dominated by street trees, which are eas-
ier to delineate than heavily-overlapping private property or park trees.
Dalponte et al. (2014) showed a 13 pp reduction in accuracy when

Fig. 8. Subsets of lidar canopy height model showing: (a) Sample of segmentation results in Alameda Parkwith significant crown overlap. (b) Classification results in Alameda Park. Trees
with no color were in the training set and thus not mapped. (c) Sample of street tree segmentation results. (d) Classification of street trees. Trees with no color were either in the training
set or not part of the study.

Table 4
Producer and user accuracies for CDA on the fused dataset compared to CDA on spectral
data only. Refer to Fig. 10 for a graphical depiction of the differences in accuracy.

Species Fused (CDA-7fuse) Spectral only (CDA-spec)

Prod. (%) User (%) Prod. (%) User (%)

ARCU 65 35 16 34
CICA 84 83 82 74
CUMA 90 91 94 81
EUFI 89 61 58 94
EUGL 93 98 96 91
FIMI 92 100 98 96
GEPA 82 69 39 55
JAMI 95 95 95 93
LIST 87 93 90 77
LOCO 61 75 82 66
MAGR 92 86 89 89
MEEX 42 46 26 32
OLEU 83 94 94 88
PHCA 64 84 72 80
PICA 85 58 84 69
PIPI2 97 89 84 93
PIUN 72 95 91 73
PLRA 83 97 86 86
POGR 92 86 62 82
PYKA 76 58 34 50
QUAG 89 77 80 87
SCMO 32 43 40 41
SCTE 93 94 93 85
STSI 19 18 17 30
SYAU 87 80 87 69
SYRO 36 80 64 17
TISP 99 87 84 88
ULPA 69 84 78 51
WARO 66 76 31 27
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classifying three tree species in a more complex boreal forest using
automatically-delineated lidar segments compared to manual crowns.
2) The basis on which accuracy was evaluated in this study was canopy
area (i.e., not stem count) correctly classified. In this scenario, large
crowns could, for example, be oversegmented yet classified correctly
due to the classifier's heavy reliance on pixel-level spectral information.
3) Both the resultant classification map and the initial manual delinea-
tion of crowns exist only as 2-dimensional overlays on a gridded CHM.
As such, even manual crowns are not perfect representations of 3-D
crown morphology and exhibit, in a sense, “segmentation errors” in
their own right. Three dimensional segmentation of the lidar point
cloud itself, where crown assignment takes place via point clustering
at the individual return level, is currently possible (e.g., Ferraz et al.,
2012; Reitberger, Schnörr, Krzystek, & Stilla, 2009) and may be useful
to implement in future classification projects.

4.5. The utility of lidar data

The overall increase in classification accuracy of 29 common species
from the inclusion of lidar structural metrics was 4.2 pp. Previous work
in complex forested settings has shown improvements from the addi-
tion of lidar to hyperspectral data of 1.1 pp for 23 classes (Dalponte
et al., 2008), 1.2 pp for 11 species (Jones et al., 2010), and 6 pp for 6
tree species (Dalponte et al., 2012). There are likely several reasons
why the addition of lidar data does not dramatically increase overall ac-
curacy. First and foremost, the structural metrics do not drive species
separability as much as spectral bands. In this study, only the height
metrics surpassed the VIS spectral bands with respect to their relative
F-statistics. Additionally, classification accuracy in this study was
assessed in terms of canopy area. Species with large canopies can al-
ready be well characterized with only hyperspectral information and
an object-oriented approach (e.g. Alonzo et al., 2013). Finally, extraction
of accurate structural information is likely most difficult for large
crowned species due to frequent intermingling with neighboring
crowns, irregular crown shapes, and segmentation error (Chen et al.,
2006; Kim et al., 2009). Despite minor increases in overall classification
accuracy, each of the projects referenced above did demonstrate signif-
icant improvements in classification accuracy for certain species.

The value of lidar data is evident for small crowned species (Fig. 9).
Of the 8 species whose classification accuracy improved by N10 pp, 6
(ARCU, GEPA, MEEX, PYKA, SYRO, and WARO) were in the bottom half
of the sample set in terms of average crown area. The aggregated aver-
age crown size for those seven species was 30.4 m2 compared to an
overall average of 78.0 m2. A particularly notable jump in accuracy
(+42 pp) was made when the fused data were used to classify
Washingtonia robusta (Fig. 10). WARO had the 2nd smallest average
crown size and the 2nd highest total tree height. These attributes,
on one hand, made WARO difficult to classify using coregistered
hyperspectral data both due to its small crown area and because of
horizontal crown displacement caused by differing view geometries.

On the other hand, these same attributes made WARO structurally
unique, and relatively easy to classify upon inclusion of lidar data. This
example highlights three key ways in which lidar likely improves clas-
sification accuracies. First, with a lidar point density of 22 pulses/m2

we have the ability to map much smaller discrete objects than with
the hyperspectral data alone. Secondly, since the crown objects were
generated using the gridded lidar dataset, there is no image registration
error. Third, unique crown structural characteristics (e.g., height, crown
length, crown shape) are notmeasureable with optical data alone.With
increased availability of fine-spatial resolution hyperspectral data
(b1 m) such as AVIRIS Next Generation (Hamlin et al., 2011) or the
Carnegie Airborne Observatory (Asner et al., 2007), it will be interesting
to see how much classification accuracies can improve even without
lidar data.

Some larger crowns were also classified more accurately with CDA-
7fuse than with spectral data alone. There is evidence that higher
crown porosity (possibly relating to lower LAI) may lead to a reduced
capacity for accurate classification using spectral data alone. It has
been shown that higher LAI strengthens spectral signals in the NIR
and portions of the VIS (Asner, 1998). In this study one of the metrics
relating to crown porosity was cp_2. This metric compares the posi-
tion of the mean crown height (as a function of tree height and
crown base height) to the median height of returns in the crown.
Higher numbers suggest a dense upper crown that skews the vertical
distribution of lidar returns upwards. Large crowns with the least
crown porosity by this measure were FIMI and EUGL. FIMI and

Fig. 9. Classification accuracy by species for spectral bands only (CDA-spec) and lidar-hyperspectral fusion (CDA-7fuse). Horizontal bars illustrate cases where fusion with lidar reduced
accuracy. For species botanical names refer to Table 1. Species are sorted by average crown size with the largest species at left.

Fig. 10.Washingtonia robusta (Mexican fan palm).
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EUGLwere both classifiedwell with spectral data alone (97% and 93%
average accuracies respectively) but they were also ranked 3rd and
1st respectively in terms of average crown size. Large and medium
crowns with the highest porosity were PLRA, PYKA, PICA and ULPA.
From the addition of lidar data they gained 4, 25, −6, and 12 pp, re-
spectively. We assume that PICA was ranked highly by this metric
more from a combination of upright crown geometry and off-nadir
lidar pulses than actual high porosity.

4.6. Classification of less common species

The original choice to map 30 species was made because 80% of
Santa Barbara's canopy cover comprises roughly 30 species and there
appeared to be diminishing increases in canopy for each additional spe-
cies added after this point (Supplementary material Figure S1). In Santa
Barbara, 23% of the total canopy cover sampled in the UFORE field col-
lection was from two species: the native Q. agrifolia (Coast live oak)
and the introduced Syagrus romanzoffiana (Queen palm). This relation-
ship between species mix and canopy cover may hold in other parts
of the country as well. For instance, based on a 2009 UFORE study in
Washington, DC (Casey Trees, 2010), roughly the same relationship
was established with 25% of canopy composed of two native species:
Fagus grandifolia (American beech) and Liriodendron tulipifera (Tulip
tree). In Los Angeles, with a very arid climate and a lack of native canopy
dominants, the relationship shifts somewhat but 30 species would still
equate to roughly 70% of canopy cover. Given an increase in availability
of lidar and hyperspectral datasets, these species–canopy relationships
indicate the transferability of the methods established in this paper to
conduct similar assessments for the canopy dominants in other, larger
cities.

In large cities, with established urban forest management programs,
it is feasible to collect training data for and map ~30 species to the
species level. However, for those, potentially, hundreds of species with
low stem counts representing the remaining 20 or 30% of canopy area,
it will be pragmatic to classify only to the leaf-type level. In this study,
mapping to the leaf-type level meant modeling the less common
species as one of the common species and checking for leaf-type agree-
ment. Over the entire dataset of 2304 crowns (~100 species), leaf-type
mapping reached 87.9% accuracy using CDA-full. However, when only
classifying the ~70 less common species the accuracy declined to
59.1%. We surmise that the low accuracy with which these species
were classified is a product of our choice to use a CDA classifier. The clas-
sification functions generated were specifically tailored to maximize
separability among the input training classes, which did not include
the less common species. This leads to a well-tuned classifier for the
common species but one that may not be able to capture the variation
in the dataset comprising the less common species. Other classification
methods may ultimately prove superior for hierarchical classification
schemes wherein all trees are classified first to the leaf-type level
and then common species are further classified to the species level.
For example, Multiple Endmember Spectral Mixture Analysis
(MESMA: Roberts et al., 1998) allows for constrained classification
based on a target spectrum's similarity to reference spectra such
that species not represented in a spectral library would rightly
remain unclassified.

5. Conclusions

This research sought to improve species and leaf-type level mapping
in the urban forest. We first selected 29 common species that dominate
the canopy in Santa Barbara, California and classified themusing CDAon
combined hyperspectral and high point-density lidar data.We achieved
a species-level accuracy among trained species of 83.4%. We mapped
the entire set of sample crowns, including ~70 less common species, to
the leaf-type level with 87.9% accuracy.We believe that this study dem-
onstrates the potential for separating highly overlapping species classes

using data fusion at the crown-object level. In an immediate, operation-
al sense, the techniques described in this paper are likely applicable
with high accuracy (and perhaps with lower point density lidar data)
for discriminating among urban vegetation growth forms (e.g. herbs,
shrubs, trees) where simple structural metrics could vastly improve
separability when combined with either multi- or hyperspectral data.
The data to accomplish this sort of classification are available in many
cities today and the results even at this generalized level could inform
policy relating to the spatial distribution of urban ecosystem structure
and function.

In line with previous research, classification accuracies in this study
were bolstered by lidar variables pertaining to tree height, crown mor-
phology, and perhaps the internal arrangement of leaves and branches.
In particular, we showed that small crowns and crowns with unique
morphological characteristics were more apt to be correctly labeled
with the inclusion of structural data. Further, we showed that classifica-
tion following automated crown segmentation was more accurate than
a pixel-level result and the diminution in accuracy introduced from
segmentation error was quite small. As many cities have gained access
to high-accuracy canopy coverage maps it is a reasonable next step to
implement simple crown segmentation algorithms to generate service-
able crown objects for further analysis. Ultimately, the ability to both
map dominant canopy species and inventory common but smaller spe-
cies is important if we're to operationalize remotely sensed urban forest
inventory.
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