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Zusammenfassung 

Veränderungen von Seegrößen geben Auskunft über Klimavariationen in abgelegenen 

Hochgebirgsregionen, von denen es nur wenige meteorologische Daten gibt. Seegrößenvariationen 

indizieren saisonal und jährliche bis dekadische Klimadynamiken, indem sie Niederschlagsereignisse 

über Einzugsgebiete integrieren. In dieser Arbeit haben wir Zeitreihen von 1058 Seen des Plateaus 

der Zentralanden (ZAP) in Südamerika untersucht. Wir nutzten die hierarchische Clusteranalyse um 

Zeitreihen ähnlicher Dynamik zu gruppieren und repräsentative Zeitreihen für die Gruppen 

abzuleiten. Weiterhin verglichen wir die erzeugten Cluster mit Klimaindizes, die die Klimavariabilität 

im Atlantik und im Pazifik widerspiegeln. 

Unsere Ergebnisse zeigen, dass dekadische Klimadynamiken auf ZAP vielseitig sind. Trotz ähnlicher 

Höhe und Größe der Einzugsgebiete existieren mehrere eindeutige Gruppen gleichen Verhaltens. 

Die hierarchische Clusteranalyse unterteilte das ZAP in 7 eindeutige Regionen gleicher klimatischer 

Variabilität: Das nördliche, nordwestliche und das südliche nördliche ZAP (Altiplano), die 

südwestliche und das nordöstliche südliche ZAP (Puna) und zwei Gebiete am nordöstlichen Rand 

des Altiplano. Wir fanden keinen eindeutigen Einfluss des Atlantiks auf die Variabilität der 

Seegrößen des ZAP, wobei es Hinweise auf einen dekadischen Einfluss gibt. Stattdessen sind 

Seegrößenvariationen auf jährlichen Skalen von 3-5 Jahren deutlich von Veränderungen im Pazifik 

geprägt mit einem deutlichen Einfluss der ENSO-Zyklen. Dabei zeigen sich feuchte (trockene) Jahre 

vorwiegend zu La Nina (El Nino) Episoden, verursacht durch vorherrschende Ostwinde 

(Westwinde) während La Nina (El Nino). Vorwiegend negative dekadische Trends von Seegrößen, 

aber auch positive Trends, die durch Gletscherschmelzen verursacht werden, zeigen einen deutlich 

Einfluss des Klimawandels auf das ZAP in den letzten Dekaden. 
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Spatiotemporal dynamics of lake areas on the Central 

Andean Plateau since 1985 

Autors: N. Werner, B. Bookhagen, A. Rheinwalt 

 

Abstract 

Changes in surface-lake areas have large potential to provide information on climatic variability in 

remote and mountainous areas, where meteorological station data are sparse. Lake-area changes 

record seasonal and inter-annual to decadal climatic dynamics by integrating daily rainfall events over 

catchment scales. In this study we analyzed time series of 1058 lakes on the Central Andean Plateau 

(CAP) in South America. In order to generate representative time series and to group lakes with 

synchronous behavior, we used hierarchical clustering and compared the lake-area clusters to climate 

indices characterizing climate variability of the Atlantic or the Pacific.  

Our results indicate that decadal climate dynamics on the CAP are diverse and that there exist 

specific groups of similar behavior despite similar altitude and catchment area of lakes. The 

hierarchical clustering analysis subdivided the CAP into 7 distinct zones of similar climatic variability 

that represent the northern, northwestern and southern northern Andean Plateau (Altiplano), the 

southwestern and northeastern southern Andean Plateau (Puna) and two zones on the northeastern 

boundary of the Altiplano. We did not observe a clear relationship of lake-size variability on the CAP 

and the climate dynamics of the Atlantic Ocean, although there is evidence for a decadal-scale 

influence. Instead, we observe that changes in lake areas on time scales of 3-5 years are controlled by 

climatic indices representing the variability of the Pacific Ocean with a dominant influence of the 

ENSO cycles as wet years show a tendency to coincide with La Nina and dry years with El Nino due 

to easterly (westerly) moisture transport during La Nina (El Nino). Prevalent negative decadal trends 

of lake-areas, but also positive trends that seem to be caused by glacial melting highlight a 

pronounced impact of climatic changes on the CAP within the last decades. 
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1. Introduction 

The assessment of climate change in remote and mountainous areas is complicated, as there exists 

limited ground-control data and numerical modeling studies often rely on weakly constrained 

boundary conditions. However it has been argued that high-elevation regions experience rapid 

climate changes and mountain regions have been coined the sentinel of changes (e.g. Urrutia and 

Vuille, 2008; Rangwala and Miller, 2012; Diaz et al., 2014; Mountain Research Initiative EDW 

Working Group, 2015; Vuille et al., 2015; Ragettli et al., 2016). Our study focuses on the Central 

Andes (CA) of South America with the orogenic Central Andean Plateau (CAP) that have been 

argued to experience rapid climate changes during the past decades. 

Several authors noted an increase in temperatures in the CAP within the last century (e.g. Bradley et 

al., 2006; Vuille et al., 2003; Bradley et al, 2006; Casimiro et al., 2013; Seiler et al., 2013; Vuille et al., 

2015; López-Moreno et al., 2016) that was accompanied by a less pronounced decrease in 

precipitation, especially in southern Peru and northern Bolivia (Vuille, 2003). Climate models predict 

a further warming within the next century (Christensen et al., 2007; Urrutia and Vuille, 2009; 

Thibeault et al., 2010), with temperatures rising up to 5 degrees (Vuille et al., 2008). The effects of a 

projected warming are severe on the population (Bush et al., 2010) due to aridification and a 

consecutive water scarcity (Vergara, 2007; Rangecroft et al., 2013; Seiler et al., 2013). Precipitation is 

assumed to occur less frequently, but more heavily and despite the uncertainty in precipitation 

prediction, any increases in total rainfall will not counteract the rise in temperatures (Thibeault et al., 

2010; Thibeault et al., 2012). However, the assessment and the prediction of climate change in the 

CA rely on sparsely distributed meteorological stations (e.g. López-Moreno et al., 2016), as well as 

low resolution satellite and reanalysis data, such as NCEP/NCAR, MERRA and CFSR (e.g. 

Garreaud et al., 2003; Carvalho et al., 2012; Eichler and Londoño, 2013; Blacutt et al., 2015). Due to 

the heterogeneous topography and wide gaps within the station density, the interpolation of ground 

observation data is prone to errors. The assessment of climatic variables from reanalysis data, 

especially from precipitation, is also subject to biases. MERRA and CFSR products for example 

overestimate rainfall in the Altiplano (Carvalho et al., 2012; Blacutt et al., 2015). Within 

topographically complex terrains such as the Andes there are always difficulties related to reanalysis 

data (Eichler and Londoño, 2013) or sparse station data (Bennett et al., 2016). Datasets from the 

Tropical Rainfall Measurement Mission (TRMM) have been used for precipitation estimates in the 

CA (e.g. Bookhagen and Strecker, 2008; Bookhagen and Strecker, 2012; Romantschke and Houze, 

2013; Mohr et al., 2014; Castino et al., 2016). While they are able to describe the large-scale rainfall 
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picture (Boers et al., 2015), they may underestimate rainfall over the CA (Scheel et al., 2011; 

Espinoza et al., 2015; Blacutt et al., 2015). Furthermore the resolution of reanalysis and TRMM 

products cannot resolve regional differences in precipitation. 

The monitoring of surficial manifestations of climate variability, such as glaciers and lakes, can 

complement sparse ground observations. Both features are indicative of changes in temperature or 

precipitation and overcome problems related to point-wise measurements as they integrate over 

catchments. They are sensible enough to resolve intra-seasonal variations, yet stable enough to 

sustain single precipitation events. Although glaciers and their changes in the CA have been studied 

extensively (e.g. Rabatel et al., 2013; Hanshaw and Bookhagen, 2014, Schauwecker et al., 2014, 

Veettil et al., 2016), they are almost absent in the interior of the CAP (Bookhagen, 2016). In contrast 

lakes can be found throughout the CAP and provide for CAP-wide information on climatic changes. 

While larger lakes such as Lake Titicaca in Bolivia or Lake Poopó in Bolivia have been studied 

previously (e.g. Garreaud and Aceituno, 2001; Abarca-Del-Rio et al., 2012) and are under constant 

observation, there is no study of all lakes in the CAP, despite their fundamental importance as a 

source of drinking water, for agriculture and the mining industry (e.g. Vergara, 2007; Michelutti et al., 

2015). The effects of climate change on the central Andean lakes are still uncertain (Michelutti et al., 

2015). The dramatic shifts of lake extents are best illustrated by the decline of Lake Poopó, that used 

to be Bolivia’s second largest lake with an area of more than 3500 km² in 1986 but completely 

vanished in the beginning of 2016.  

Satellite sensors provide images of the Earth’s surface for several decades and allow for the 

continuous monitoring of lakes. Numerous methods exist to classify water in satellite images, the 

most prominent being band ratios such as the Normalized Differential Water Index (NDWI - 

McFeeters, 1996) or the Modified Normalized Differential Water Index (MNDWI - Xu, 2006). Both 

use the ratio of the green spectral range and the near-infrared or short-infrared range, respectively. In 

contrast to other land classes, water reflects the green portion and strongly absorbs the infrared 

portion of the sun’s radiation and therefore can be differentiated with these ratios. 

In order to investigate the temporal variations of lake sizes and the spatial differences within the 

CAP we rely on multi-spectral Landsat imagery from 1985 to 2011 to classify all lakes of the CAP 

and to derive their corresponding time series of areal changes. Weighted linear regressions were used 

to decipher general trends of every lake and we grouped the data to subdivide the CAP into regions 

with coherent lake-area time series characterizing different climatic regions. We further analyzed the 

spatiotemporal patterns of the lake area variability and the influence of large scale oscillations as 

determinants of lake changes.  
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2. Geographic and climatic setting 

The Central Andean Plateau (CAP) is encompassed by the eastern and western Cordilleran ridges of 

the Central Andes and is separated into the northern CAP, referred to as the Altiplano and the 

southern CAP, the Puna de Atacama, referred to as the Puna. With its extension from 14°S to 29°S 

(Fig. 1) it forms the second largest orographic plateau after the Himalaya (Allmendinger et al., 1997). 

The climate of the CAP is semi-arid to arid determined not only by its mean elevation of about 

4000m but also by the prevention of moisture influx by the circumjacent Cordilleran ridges. Wet 

episodes occur mainly during austral summer, when moisture is transported from the continental 

lowlands by easterly winds, with dominantly dry phases prevailing throughout the rest of the year 

(e.g. Garreaud, 1999; Marwan et al., 2003; Garreaud et al., 2003; Rohrmann et al., 2014; Bennett et 

al., 2016). Those phases are linked to the South American Monsoon System (e.g. Liebmann and 

Mechoso, 2011; Marengo et al., 2012; Silva and Kousky, 2012), which is one of the main features of 

the South American climate. Intensified easterly trade winds from the tropical Atlantic (Zhou and 

Lau, 1998) converge in front of the Andes and the southward component, also referred to as the 

South American low-level jet (SALLJ), brings moisture into the subtropics along the Andean 

mountain range (e.g. Ferreira et al., 2003; Vera et al., 2006; Liebmann and Mechoso, 2011). A 

southward shift of the Inter Tropical Convergence Zone (ITCZ) during austral summer (e.g. 

Garreaud et al., 2008; Silva and Kousky, 2012) results in widespread deep convection over the 

Amazon basin that extends towards southeastern South America as an elongated band along the 

South American Convergence Zone (SACZ; e.g. Carvalho et al., 2004). As a dynamical response to 

enhanced convection over Amazonia an upper tropospheric anticyclone, known as the Bolivian 

High, forms, with its strength being mainly determined by precipitation in the CA (Lenters and 

Cook, 1997; Lenters and Cook, 1999). The intensity and the position of the Bolivian High strongly 

regulate moisture inflow from the continental lowlands into the CAP with an easterly/wet, 

westerly/dry pattern (Lenters and Cook, 1999; Vuille, 1999; Garreaud et al., 2003; Neukom et al., 

2015). Intraseasonal variabilities of the SAMS mainly result from Rossby wave trains from the 

Southern Pacific. The El-Nino Southern Oscillation (ENSO) plays a major role on the inter-annual 

climate variabilities, especially in the CAP (e.g. Vuille, 1999; Vuille et al., 2000; Garreaud et al., 2003; 

Placzek et al., 2009; Morales et al., 2015; Bennett et al., 2016). The warming of the Eastern Pacific 

during positive ENSO phases (El Nino) weakens the Pacific trade winds and leads to anomalous 

uprising over the Pacific and anomalous subsidence over Amazonia through Walker cell connections. 

This subsidence hinders deep convection over the South American tropics and thereby weakens and 
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shifts the Bolivian High northward. The associated warming of the troposphere over the Pacific also 

induces higher temperatures over South America, reducing the meridional temperature gradient 

whereby westerlies are dominant over most of South America. Those westerlies at lower and upper 

levels, as well as the weakening and the shift of the Bolivian High strongly restrain moisture 

transport into the CAP during El Nino periods. During La Nina this pattern reverses and easterly 

flow and therefore wetter conditions over the CAP persist (e.g. Garreaud and Aceituno, 2001; 

Garreaud et al., 2003; Marwan et al., 2003; Strecker et al., 2007; Garreaud, 2009; Bookhagen and 

Strecker, 2010). The enhanced heating of the CAP during El Nino episodes initiates a monsoon 

return flow that strengthens the southern Atlantic trade winds within the following summer, thus 

triggering increased precipitation in the year after an El Nino (Vuille, 1999; Vuille et al., 2000). 

Temperatures vary up to 2°C between both ENSO phases, with a warming over the CAP during El 

Nino and a cooling during La Nina (e.g. Garreaud, 2009) 

 

3. Datasets 

3.1 Multi-spectral satellite imagery and elevation data 

We used a total of 3365 level-1G processed images of the Thematic Mapper (TM) multi-spectral 

instrument provided by the Landsat 4 and Landsat 5 satellites from 1985 to 2011. The study region is 

subdivided into 22 scenes, with an average of 153 images per scene (Fig. S1 in the SI material). Due 

to geometric distortions and georeferencing errors of the level-1G Landsat products, some of the 

images of the initial image stack had to be deleted. All Landsat images have been transformed to top-

of-atmosphere (TOA) reflectance (Chander and Markham, 2003). This conversion compensates for 

varying satellite sensor parameters, e.g. the sensor-specific gain or the angle of the solar irradiation, 

which cause intensity deviations of the same target in multiple images (Nelson, 1985). Additionally 

we used a 30m Digital Elevation Model from the Shuttle Radar Topography Mission (SRTM), 

acquired within February 2000, to compute catchment area and slope data. 
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4. Methods 

4.1. Lake classification 

We used the first shortwave-infrared (SWIR) channel of the Landsat TM (band 5) instead of a band 

ratio in the classification process. The NDWI is strongly influenced by sediment, algae and solubles 

within the water and the MNDWI is prone to misclassifications in the direct vicinity of the lakes, e.g. 

wet sediment. Every SWIR-image is turned into a binary image with water and non-water regions by 

using an empirically chosen threshold (see SI material for additional information). A slope map was 

used additionally to account and automatically remove false classifications of mostly cloud and 

mountain shadows that cover the same spectral range as water. 

We perform multiple iterations to achieve the best classification result: First, we loop trough all 

images to classify water bodies from every image and cumulatively add them to an initial water mask.  

Second, this initial water mask, along with multi-spectral satellite images, is used to manually select 

lakes of interest and to create a reference lake mask. In this step, small ponds, transient water bodies, 

river segments and falsely classified mountain and cloud shadows are removed. Some lakes have 

been manually edited, where nearby hillslope shadows or glaciers and snow have been falsely 

classified as part of the respective lakes. The reference lake mask gives an estimation of where lakes 

have been present within the last 30 years, but does not give insights on the exact lake extents at 

every date covered by the Landsat images. Third, the classification of water bodies in the image stack 

is repeated but for areas outlined by the reference lake mask. Every classified object is labeled 

according to a corresponding index in the reference water mask. The number of pixels of every 

object is converted to an area for every time step. 

Because the Landsat images covering the entire CAP are constructed from 22 path/row 

combinations (see SI material), the dates of image acquisition differ. We therefore resampled all lake-

area time series to a common grid and binned all values into 3-month periods that are based on 

seasonality (DJF: December, January, February; MAM: March, April, May; JJA: June, July, August; 

SON: September, October, November). We assigned the mean value for every bin and no value if 

the bin does no contain data values. 
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4.2. Hierarchical clustering analysis (HCA) 

The time series have been clustered to aggregate time series with a similar coevolution. This process 

also works as a quality control by indicating outliers and errors within the dataset. Using clusters in 

the climatic analysis furthermore gives a more regional picture in the climatological context. We used 

HCA (e.g. Jain et al., 1999; Manning et al., 2008; Rokach and Maimon, 2010; Murtagh and Contreras, 

2012) to combine lake time series with a similar coevolution. Our methodology follows the approach 

described in Rheinwalt et al. (2015). In our study similarity is expressed as the pairwise correlation of 

the lake area time series. As a distance (d) metric (e.g. Murtagh and Contreras, 2012) the arcos of the 

Pearson correlation coefficient r is used. The more different (similar) time series are the higher 

(lower) is the angle in vector space and the distance between measurements. Correlation of the time 

series has been calculated pairwise, whereby rows of a pair with no value have been ignored. 

Additionally lakes have been deleted, where more than 80 percent of the 3-month smoothing 

window are zero or have no value. The average linkage method was chosen for the clustering which 

uses the average distance of two clusters as the distance metric in the clustering process. The 

complete linkage criterion is more sensitive to outliers and uncertainties regarding the classification 

and previous smoothing. The single linkage criterion is not suitable as it shows chaining effects and 

creates very large clusters (Manning et al., 2008). As the average linkage criterion used the average 

distance between clusters to assign them, it is not guaranteed that all lakes within one cluster 

correlate well with each other lake from the same cluster. There is a chance of outlier lakes that fit 

best into a certain cluster, but show weak correlations with its other lakes. We therefore calculated 

the mean correlation coefficients for the lakes of a cluster and removed the lakes that fall below 2σ 

(see SI material for a detailed description). The output of the HCA is a dendrogram that represents 

the stepwise aggradation of time series pairs and the corresponding distances (see SI material for 

additional information). It can be cut at different thresholds depending on either the intended 

average distance (d) or the attempted cluster number.  

 

5. Results 

5.1. Linear regression analysis 

We derived time series from 1058 lakes within the CAP and performed weighted linear regressions 

on all time series to obtain decadal trends of lake-size (Figure 3a). Significant negative trends prevail 
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throughout the CAP. Positive significant trends mostly occur in glaciated areas or in areas close to 

the Amazonian moisture source. Those are areas near glaciers or regions close to the continental 

lowlands, where moisture is coming from. A large spread within the linear regression coefficients in 

the northern Altiplano reflects in the large variance of elevations in that region (Fig. 3b and 3c). The 

central and southern Altiplano show only slight changes in elevation and reveal a low variance in the 

regression coefficients. At the transition from the Altiplano to the Puna (northern to southern CAP), 

there is a strong excess in negative regression coefficients (Fig. 3b) that is equally, but inversely, 

pronounced in the elevations (Fig. 3c). The same pattern is visible in the southern part of the Puna. 

 

5.2. Hierarchical clustering analysis 

We have chosen thee clustering thresholds to generate different cluster number through the CAP 

(Fig. 5) At a distance of d1=1.5, there are two clusters that spatially subdivide the CAP into a 

northern part (C12) that represents the Northern Altiplano and a southern part (C11) that represents 

the southern Altiplano and the Puna Plateau (Fig. 5a). The elevation profiles (Fig 5d) of both clusters 

only slightly deviate from the CAP elevation histograms, showing a bimodal distribution with its 

peaks at ~3900m and ~4500m. Reducing the threshold to d2=1.35 results in 3 clusters. The northern 

Altiplano (C23) remains unchanged while the southern CAP is divided into the southern 

Altiplano/northeastern Puna (C21) and the southwestern Puna (C22, Fig. 5b). The elevation 

histograms of the first two clusters (Fig. 5e) again resemble the elevation histogram of the CAP, but 

the third cluster C23 forms a single, broad distribution mostly covering lower elevations. As a last 

threshold we use a distance of d3=1.08 to obtain 24 clusters, of which 17 have been removed as they 

include less than 10 lakes and have a large spatial spread.  

With the lowest threshold we generate 7 major clusters that segment the CAP (Fig. 5c). The northern 

Altiplano is divided into four clusters. Cluster 5 (C35) represents the northernmost sector of the 

Altiplano and Cluster 4 (C34) the southern parts of the northern Altiplano. Cluster 6 (C36) and 

Cluster 7 (C37) represents highly elevated lakes at the eastern margin of the northern CAP. The 

southern Altiplano is represented by Cluster 1 (C31). The Puna Plateau is divided into a northeastern 

part, Cluster 2 (C32), and a southwestern part, Cluster 3 (C33). A more detailed description of the 

clusters and its lakes is given in Table 1. The further segregation of the southern Altiplano and the 

northwestern Puna (C21), as well as the northern Altiplano (C23) with the third threshold d3 not only 

reflects in the distribution of the lake locations but also evident in the elevation histograms (Fig. 5f).   
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5.3. Constructing mean cluster time series 

The clustering analysis strongly reduces the dimensionality of the lake area dataset and we derived 7 

distinct regions of synchronous lake-size variability. As a representative time series for every cluster 

we use the mean of all 3-month mean time series within a cluster (Fig. 6), whereas we rly only on 

time steps with more than 10 measurement. In order to account for the large range of lake sizes 

(1km² to >1000 km²) we standardized all time series to z-scores and refer to the resulting time series 

as mean cluster time series. 

The mean cluster time series show a pronounced inter-seasonal variability with the maximum lake 

areas occurring during austral summer and autumn (DJF/MAM), expect for C33, where the largest 

lakes sizes occur in austral winter (JJA). The inter-seasonal variability is most pronounced in the 

southern Altiplano (C31), where rainfall rapidly accumulates in flat lake basins and forms shallow 

water layers over large areas. These flat lakes are not persistent and most of the water evaporates 

equally rapid within a few weeks to months as is best illustrated by the Salar de Uyuni (Fig. S9 in the 

SI material). The sharp and narrow peaks of C31 are apparent in the mean time series of the 

southwestern Puna (C33) as well. The lakes around the Lake Titicaca (C34) and in the northeastern 

Puna (C32) show broader peaks of lower magnitudes. The data density of the remaining clusters (C35, 

C36 and C37) does not sufficiently resolve inter-seasonal differences.  

On inter-annual timescales large differences can be observed within and among the clusters. There 

are substantial differences in annual lake sizes with low lake-area increases in e.g. 1990 or 1998 and 

large lake-area increases in e.g. 2000 or 2006. This becomes especially obvious in the positive 

differences of the mean cluster difference time series (Fig. S6 in the SI material). The difference time 

series represent the differences of the mean cluster time series measurements to their relative last 

measurements (see SI material for more information). Some years show opposing wet and dry years 

among the clusters, e.g. 1987 or 2008, which have been anomalously wet years in C31, but rather dry 

years in C34. The succeeding years, 1988 and 2009, have been wetter in C34 and distinctively drier in 

C31. Nevertheless the majority of years are similar, so that strong or weak lake size increases of one 

cluster are reflected by the other. As mentioned before C33 shows little inter-annual variability and its 

variations do not generally reflect in the other clusters. The lowest lake sizes of C33 however 

occurred in 1997/1998 that is also the time of lake size minima in C31 and C32. In contrast the 

lowest lake areas in C34, C36 and C37 occurred in 1991/1992. The highest lake levels observed within 

the study period are not uniform throughout the clusters, however all clusters, except for C37, show 
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high lake levels in the mid to late 1980s followed by a continuous decline until the mid 1990s with 

another common high phase at 1999/2001. 

We also performed weighted linear regressions on the mean cluster time series (Table S4 in the SI 

material) in order to find linear trends in the data. The strongest observed trend can be found in C32 

with a significant negative linear trend (at 95% significance level) throughout the study period. A 

similar but less clear and not significant decline is observable in C31 and C35. The lakes of C34 do not 

show a linear trend but a rather decadal-like oscillation with high lake sizes phases in the mid-1980s 

or the early 2000s and low lake size episodes in the early to mid-1990s and at least partially in the 

early 2010s. The largest lake area measured during the study period occurred in 2006 and not in the 

1980s, when the largest lake sizes of the southern Altiplano and the northwestern Puna have been 

observed. The clusters C36 and C37 on the contrary show positive trends, whereby the positive trend 

of C36 is significant at the 95% level of significance.  

 

5.4. Climate indices 

In order to find relationships between lake size variability and atmospheric oscillations, especially 

regarding the influence of changes in the Pacific and Atlantic Oceans, we performed cross-

correlations with various climate indices (Table S3 in the SI material). However, the cross correlation 

did not yield conclusive results (the detailed analysis and the cross-correlation results are given in the 

SI material). For the visual and qualitative assessment of apparent influences of the El Nino 

Southern Oscillation (ENSO), we compared the total annual lake growth with ENSO phases (Fig. 7) 

as determined by the National Oceanic and Atmospheric Administration (NOAA) with the Oceanic 

Nino Index (ONI). Following this classification, ENSO is subdivided into strong and moderate El 

Nino events (ONI>1 and 0.5<ONI<1, respectively), strong and moderate La Nina phases (ONI<-1 

and -1<ONI<-0.5, respectively), as well as neutral episodes (-0.5<ONI<0.5). The annual lake 

growth is represented by the annual lake growth time series and corresponds to the annual sums of 

the positive differences (DJF(0) to DJF(+1)) of mean cluster difference time series.  

Most of the maximum annual lake area increases in C31, C32, C34 and C35 occurred during negative 

ENSO modes, e.g. 1991, 2001 or 2006, or in the year after an El Nino, e.g. 1993. However there are 

also El Nino years with large lake increases (1987) and La Nina years with small lake increases (1989). 

In C33 the largest annual growths occurred equally during El Nino or La Nina episodes. In C36 and 

C37 the largest annual lake increases occurred during El Nino years.  
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To quantitatively assess the ENSO influence we cross-correlated the mean cluster difference time 

series (see SI material) with the MEI and obtained significant negative correlations for the clusters 

C31, C32, C34 and C35, but not for the remaining clusters (Fig. S8 in the SI material). Significance was 

tested with a random permutation model at the 95% significance level. The maximum correlation 

coefficients occur at a lag of 2 months for C31 and C34 (r = -0.34 and r = -0.42, respectively) and at a 

lag of 4 months for C32 and C35 (r = -0.36 and r= -0.52, respectively). Cross-correlations of the 

mean cluster difference time series with climate indices of Atlantic sea surface temperature (e.g. TSA 

(Tropical South Atlantic Index), TNA (Tropical North Atlantic Index) and AMO (Atlantic 

Multidecadal Oscillation Index) did not show significant correlations. 

 

6. Discussion 

6.1. Spatial patterns 

The clustering analysis allowed us to segment the CAP into 7 distinct regions of spatial variability. 

The N-S climatic gradient (e.g. Garreaud, 2009; Placzek et al., 2009) seems to represent the dominant 

factor on lake size variability, while the elevation plays a major role in the further segregation of the 

main clusters. There is no clear evidence in the HCA for the previously described E-W precipitation 

gradient (e.g. Vuille and Keimig, 2004) in the CAP with larger annual precipitation amounts in the 

eastern sectors of the plateau due to moisture from the east. However, the clustering of the CAP 

with correlation coefficients is based on similarities in the temporal coevolution and not on 

differences in magnitudes. The spatial pattern of the 7 clusters we obtained from the lowest 

threshold at d3 resembles SE-striking bands from north to south so that the main mode of spatial 

variability arranges rather along a NE-SW gradient. Those bands show similarities to spatial patterns 

identified by Vuille and Keimig (2004), who found three coherent modes of variability that we could 

further refine with the HCA. The NE-SW gradient also corresponds to the northeasterly source of 

moisture from the Amazon lowlands (e.g. Garreaud et al., 2003). A reason for this gradient is given 

by a combination of the source of moisture and the geometry of the Andean belt with the broadest 

width of the eastern Cordillera and the Central Andes in general at the height of the southern 

Altiplano and roughly at the transition of C34 and C31, separating the northern and southern 

Altiplano, respectively. The subdivision of the CAP is of particular interest for paleoclimate analyses 

(e.g. Placzek et al., 2006; Placzek et al., 2009; review in Baker and Fritz, 2015) when samples of 

different regions within the plateau region are compared (Vuille and Keimig, 2004). 
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6.2. Inter-seasonal variability 

The general behavior of inter-seasonal variability is similar for all clusters, despite differences in the 

slope of periods of lake level decreases that are rather steep in the case of C31 or C33 and shallower 

in C32 or C34. C33 is special in a sense that the largest lake areas do not occur in austral summer 

(DJF) as is the case for the other clusters but in austral winter (JJA). As the southern-most sector of 

the CAP, moisture from the eastern and north-eastern regions in the continental foreland rarely 

reaches this region. It is rather moisture from the Pacific that is responsible for precipitation events 

in that area (Placzek et al., 2009). This wintertime rainfall might be related to northward extending 

fronts of a midlatitude precipitation band related to the westerlies of the southern Hemisphere 

(Vuille, 1999; Strecker et al., 2007; Placzek et al., 2009; Boers et al., 2016).  

 

6.3. Inter-annual variability 

The strong inter-annual variability in C31 and C33 can be related to the characteristics of lakes in 

those regions. Rainfall rapidly accumulates in flat lake basins and forms shallow water layers over 

large areas. These flat lakes are not persistent and most of the water evaporates equally rapid within a 

few weeks to months as is best illustrated by the Salar de Uyuni in C31. Lakes in C32 and C34 seem to 

be more stable throughout the study period that might be in the case of C32 due to higher elevations 

and lower evaporation rates and in the case of C34 due to higher levels of moisture in that region 

compared to other areas of the CAP. The latter is not only caused by the evaporation of Lake 

Titicaca and the corresponding atmospheric moistening, but also to the configuration of the eastern 

Cordillera in the northern Altiplano that allows for upslope transport of foreland moisture despite 

prevailing westerly flow above the CA (Falvey and Garreaud, 2005). The differences of the lakes in 

C34 and C31 are especially visible comparing Lake Titicaca (C34), a large freshwater lake with a depth 

of 281m and Lake Poopó (C31), a large saline and shallow lake with a depth of only few meters. This 

further amplifies the northeastern source of moisture and the NE-SW gradient (Garreaud, 2009). 

Some studies however presented evidence that moisture from the subtropical plains to the SE of the 

CAP also contribute to rainfall in the southern parts of the Altiplano and the Puna via the Chaco 

low-level jet and cold front surges from the south (e.g. Placzek, 2009; Rohrmann et al., 2014; Boers 

et al., 2016). Opposing wet and dry phases (e.g. 1987 or 2008) in the northern and southern Altiplano 

might indicate an additional southeasterly source of moisture in our data. Additionally the Puna (C32 

and C33) shows no anomalies in the annual lake growth time series during the strong El Nino of 
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1997/1998, despite the preceding, anomalous lake-area decrease due to El Nino related temperature 

increases. While humidity in the Amazonian lowlands to the NE of the CAP is not important for 

rainfall variability over the CAP (Garreaud et al., 2003), moisture levels in southeastern South 

America strongly control the intensity of precipitation that reaches the southern CAP from the SE 

(Quade et al., 2008). The SALLJ that brings moisture to the subtropical plains of southeastern South 

America was particularly strong during the El Nino of 1997/1998 (Ferreira et al., 2003) and thus 

might be an explanation for non anomalous lake-area increases during that year compared to the 

anomalously low increases in the Altiplano. 

 

6.4. Decadal trends 

The linear patterns of temporal variability in lake areas provide further insights on the characteristics, 

the behavior and the trends of the clusters and the CAP. The clusters C36 and C37 show positive 

trends that are in consideration of the warming of the Central Andes (e.g. Vuille et al., 2015) rather 

unexpected. However, the location of the corresponding lakes close to the moist continental 

foreland and their proximity to glaciers of the Central Andes justify lake area increases throughout 

the study period. This further suggests that most of these lakes are proglacial lakes and that the 

decline of most Andean glaciers (e.g. Vuille et al., 2008; Rabatel et al., 2013) reflects in the growth of 

those lakes. Despite the distinctive decline of lakes in C34 from the 1980s towards the 1990s and 

during the end of the study period, the lake sizes of C34 remained rather stable. That can be, as 

described beforehand, attributed to the structure of the eastern central Andes and the evaporation of 

Lake Titicaca (Falvey and Garreaud, 2005). Due to the large volume of water within the Titicaca 

basin, the Lake Titicaca is more stable than flat salt lakes in the southern Altiplano and the 

southward transport of water by the Rio Desaguadero provides water to the lakes in the southern 

and western vicinity of Lake Titicaca. However severe declines in the water budget of Lake Titicaca 

will strongly affect the stability of the surrounding lakes. In the northernmost parts of the Altiplano 

the lakes of C35 show a slight areal decrease since 1985 that could be related to a smaller influence of 

moisture from the Lake Titicaca and to less moisture from the east reaching that area. This image is 

similar in the southern Altiplano, where flat and unstable salt lakes prevail that react very sensitive to 

climatic changes. Indeed the lakes of C31 did not return to the large areas that emerged during the 

1980s, except for some years of short-term lake size highs (e.g. 2001 or 2006). This is indicative of 

less moisture entering the southern parts of the Altiplano compared to C34. The northeastern parts 

of the Puna plateau show a significant decline throughout the timeframe of the study that is also 
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strongest among the clusters. This decline and the high elevations of lakes in C32 (Fig. 3f) suggest a 

more pronounced susceptibility of lakes at greater altitude. Despite the strong negative decadal 

trends observed in C32, the annual lake growth (Fig. 7) does not noticeably drop within the study 

period and we hypothesize that the continuous decrease of lake areas in the northeastern Puna (C32) 

is not primarily induced by lower precipitation, but rather by increasing temperatures. It is especially 

evident in 2001 or 2010 that strong or frequent rainfalls are capable of bringing lake sizes to the level 

of the 1980s, when lake areas in this region were at its maximum. 

 

6.5. Influence of regional-scale circulations 

The inter-annual variability is mostly controlled by large-scale circulations and as shown in previous 

studies it is linked to the ENSO cycles (e.g. e.g. Vuille, 1999; Vuille et al., 2000; Garreaud et al., 

2003). Nonetheless we could not find a clear influence of El Nino and La Nina on lake size 

variability in the cross-correlation analysis of the mean cluster time series with climate indices (see SI 

material). However the role of ENSO is apparent with regard to the mean cluster difference time 

series (see SI material) and the derived annual lake growth time series and a cross-correlation of the 

difference time series and the MEI yields significant negative correlations in the inner parts of the 

Altiplano and the southwestern Puna. The other clusters do not show a clear relationship with 

ENSO. In the case of C33 this could be related to different afore mentioned mechanisms of rainfall 

that are rather related to the Pacific. The clusters C36 and C37 are located at the eastern border of the 

CAP where moisture contents are higher compared to other regions of the CAP due to enhanced 

upslope transport of moisture through the dissected eastern Cordillera (Falvey and Garreaud, 2005). 

This upslope transport also prevails during an El Nino related westerly flow regime over the CAP. 

The significant negative correlations of C31, C32, C34 and C35 further support the La Nina/wet, El 

Nino/dry pattern (e.g. Garreaud and Aceituno, 2001; Garreaud et al., 2003).  Despite the conditions 

after an El Nino year, the following year tends to be wetter due to a monsoon return flow and a 

strengthening of the Atlantic trade winds in the next summer (e.g. Vuille et al., 2000). This can be 

seen in all clusters except for C33 in 1992/1993 after a strong El Nino in 1991/1992 and also in 

1998/1999, 2005/2006 and 2010/2011, which all exhibited a La Nina signal. It is therefore not clear 

if the large lake size increases during those years are related due to the monsoon return flow or the 

La Nina conditions. In contrast the year after a moderate to strong La Nina event (e.g. 1999/2000 or 

2008/2009) seems to be drier (Vuille et al., 2000). If there are three consecutive years of prevailing 

La Nina conditions, the third year shows large lake area increases (e.g. 2000/2001). The heating of 
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the eastern Pacific during El Nino heats the overlying atmosphere and thus temperature increases are 

observed over the CAP during El Nino (e.g. Vuille et al., 2000). That is especially evident in 

1997/1998, where lake areas in C31, C32 and C33 dropped to their lowest point in the study period 

coinciding with the strongest El Nino in the last 30 years. Even though there is a tight coupling of 

the Pacific Decadal Oscillation (PDO) to the ENSO cycles we found no distinct relationship of lake 

size variability and the PDO from the cross-correlation analysis of the PDO-index and the annual 

lake growth time series. As other studies before (e.g. Garreaud et al., 2003), we also found no 

conclusive influence of the northern and southern Atlantic on lake size variability despite different 

mechanisms that are capable of putting changes of central Andean lakes and the Atlantic into 

relation. The continuous warming of the northern Atlantic and the steady increase of the AMO 

within the last decades might shift the ITCZ and convection over the Amazon basin northward (e.g. 

Broccoli et al., 2006; Knight et al., 2006), thus rendering especially the southern parts of the CAP 

drier. The decadal decline of lake sizes within C31 and C32 supports this theory. Furthermore changes 

in the tropical Atlantic temperatures and also the temperature gradient between the northern and 

southern Atlantic strongly control the strength of the trade winds and therefore how much moisture 

is transported into the subtropics of South America. The Chaco region to the SE of the CAP that 

substantially contributes to the rainfall of the Puna and the southern Altiplano shows a large 

variability in moisture levels that are related to the trade wind strengths and the intensity and mode 

of the SALLJ (Vera et al., 2006). Additionally there have been described several teleconnections 

between the Atlantic and the Pacific Oceans (e.g. Giannini et al., 2001; Kayano et al., 2011; Kayano 

et al., 2013; Kayano and Capistrano, 2014). As we did not find a clear influence of the Atlantic, any 

apparent relationships are either not recognizable with out dataset or act on decadal timescales. This 

may be also the reason why we found no association of lake area changes and the PDO. Garreaud et 

al. (2003) found that moisture availability in the continental foreland of the CAP shows little 

variability and that changes in the wind regimes control moisture transport into the plateau region. 

Hence on inter-annual timescales, changes in the strength and the position of the Bolivian High that 

are closely tied to variations in the ENSO cycles seem to be the main driver of lake size variability. 

Nonetheless any decadal-scale oscillation like the AMO or the PDO might still contribute to the 

long-term signal. 
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7. Conclusion 

In this study we semi-automatically extracted lakes and their corresponding areas from Landsat 

satellite images from 1985 to 2011 for the Central Andean Plateau (CAP) in South America. We 

generated time series of lake-area changes for 1058 lakes and we clustered the data in order to 

segment the CAP into regions of similar climatic variability. We make the following three key 

observations: 

First, hierarchical clustering analysis subdivided the CAP into 7 coherent climatic regions: The 

northern and northwestern Altiplano, the upper northeastern Altiplano and the lower northeastern 

Altiplano, the southern Altiplano and the northeastern and southwestern Puna.  

Second, linear regression analyses of single lake time series and the mean cluster time series indicate 

mainly negative trends throughout the inner parts of the plateau region, especially in the southern 

Altiplano (northern CAP) and the northern Puna (southern CAP). Negative trends seem to be 

stronger at higher elevations as is evident in the case of the northeastern Puna. Positive trends (i.e. 

increasing lake areas) are observed at the plateau boundary of the northern Altiplano and are 

associated to glacial melting and the proximity to the Amazonian moisture.  

Third, analyses of lake size variability and climate indices indicates no clear relationship of lake area 

changes with variations in the Atlantic (TSA, AMO) or the PDO. However, decadal-scale influences 

of the AMO or the PDO are possible, but cannot be verified explicitly with our data. Instead we 

found negative significant correlations of annual lake growth time series with the MEI that supports 

the general view of wetter (drier) conditions during La Nina (El Nino) due to prevailing easterly 

(westerly) winds associated with both ENSO cycles. We therefore conclude that ENSO is the 

dominant driver of inter-annual variability in most parts of the CAP.  

This study is the first to analyze all lakes within the CAP on decadal timescales and our results shed 

new light on the spatial and temporal climatic variability of the CAP. Prevalent decadal trends of the 

central Andean lakes display pronounced impacts of climatic changes on water resources of the CAP. 

The data from our study not only improves the understanding of past climatic variations in that 

region but also presents prospects on how climatic changes may affect the CAP in the future. 
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Fig. 1: Overview of the Central Andean Plateau (highlighted in yellow) and its location within South America.  

 (Satellite  image data: Google, DigitalGlobe). 
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Fig. 2: Landsat image from 14.March of 1999 showing the Lake Poopó (in this study combined with lake Uru-Uru in 

 the north) in Bolivia and the products from the semi-automatic classification process: A reference lake mask 

 (red) that represents the maximum lake extents from 1985 to 2011 and a specific lake mask (blue) that shows 

 the lake extents at the date of image acquisition (1999). 
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Fig. 3: Overview of weighted linear regression coefficients (Beta) and 95% level of significance (red – negative 

 significant, blue – positive significant, grey – not significant). (a) Spatial distribution of lake centroids, (b) linear 

 regression coefficients versus Latitude, (c) linear regression coefficients versus elevation 
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Fig. 4:  HCA dendrogram with black lines indicating the chosen thresholds (d1=1.5, d2=1.3 and d3=1.08). The obtained 

 clusters are labeled within the figure. The clusters that result from cutting the dendrogram at the lowest 

 threshold d3 are colorized. 
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Fig. 5:  Spatial distribution (a-c) and elevation histograms (d-f) of clusters for different HCA dendrogram thresholds   

 (a, d) d1 = 1.5, (b, e) d2 = 1.35, (c, f) d3 = 1.08. 
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Fig. 6: Overview of clusters from HCA at the lowest threshold (d3) with equally colored mean cluster time series.    

 Lake areas have been standardized to z-scores. 
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Fig. 7: Annual lake growth time series as bar plots showing the annual lake growth (as z-scores) per year. Annual lake 

 growths are the summed differences from DJF(0) until DJF(+1) of the mean cluster difference time series (see 

 SI material) representing the difference of a measurement to the last measurement. Bars are colorized by the 

 prevailing ENSO mode during the corresponding year, with dark blue and light blue indicating moderate to 

 strong and weak La Nina events (ONI<-1 and -1<ONI<-0.5, respectively), neutral conditions (gray) and dark 

 red and light red showing  moderate to strong and weak El Nino episodes (ONI>1 and 0.5<ONI<1, 

 respectively).  
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List of Tables 

 

Cluster Location Description 

 

C31 

 

Southern Altiplano 

Mostly flat saline lakes, e.g. Lago Poopó, Salar de Uyuni, and Laguna 

de Pozuelo. Some of the lakes have areas greater than 100km² but 

are only up to a few meters deep. React very sensitive to changes in 

precipitation and evaporation. 

C32 Northeastern Puna Similar to Cluster 1, but at higher elevations. Also flat and saline 

lakes (not as extensive as in Cluster 1) and in part deeper lakes.  

C33 Southwestern Puna Small, flat and saline lakes south and east of the Atacama desert. 

C34 Southeastern northern Altiplano Many lakes of different depths around the Lake Titicaca and along 

the Rio Desaguadero. 

C35 Northeastern northern Altiplano Small and flat lakes in the mountainous areas of the northernmost 

parts of the Altiplano. 

C36 Northern East-Altiplano Mostly proglacial lakes in deep valleys of the eastern Cordillera. 

C37 Southern East-Altiplano Mostly proglacial lakes of the southernmost tropical glaciers. 

 

Table 1: Overview of the clusters that we obtained from the HCA with the lowest threshold d3 and description of the 

 corresponding lakes and the location. 
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Supplementary Material 

A. Landsat dataset 

This study uses Landsat imagery to create time-series of lake area changes within the timeframe of 

1985-2011. We obtained a total of 3365 images within this period from the Landsat 4 and Landsat 5 

missions. Both missions work with the same sensor, the Thematic Mapper (TM) that covers 7 bands 

within a spectral range of 0.45 µm - 12.5 µm and at a resolution of 30 m (band 1-5 and band 7) and 

120 m (band 6). More details on the bands are given in table S1.  

We used Level-1G Landsat products, which have been radiometrically (e.g. Chander and Markham, 

2007) and geometrically (http://landsat.usgs.gov/geometry.php) corrected. Landsat images are 

recorded as 185 km * 172 km scenes that correspond to a specific row in a path (orbit). There are 22 

path/row combinations with 5 different paths that cover the CAP (Fig. S1)  

 

B. Lake classification 

One of the most common approaches in water classification is to utilize the spectral properties of 

water. In contrast to most land classes, water strongly absorbs the infrared portion of the radiation 

that is emitted from the sun and therefore has low intensities in the infrared-bands of optical satellite 

sensors. Thresholding those bands yields a binary image that separates water and other classes. 

However different sensors and even different scenes of a single sensor require different thresholds. 

In order to establish a unique threshold for water classification, McFeeters (1996) introduced the 

Normalized Difference Water Index (NDWI), a band ratio of the green and the near-infrared (NIR) 

sensor bands, normalized to values between -1 and 1:  

 

𝑁𝐷𝑊𝐼 =  
𝐺𝑟𝑒𝑒𝑛 − 𝑁𝐼𝑅

𝐺𝑟𝑒𝑒𝑛 + 𝑁𝐼𝑅
 

 

Pixels that contain water have positive, whereas pixels of other classes, e.g. vegetation, soil or rocks 

have negative values, as their reflectance is higher in the NIR spectral range than in the green range. 

The NDWI works very well for open and clear water, but cannot be used in the Central Andean 

Plateau. Most of the lakes in that area are very flat and saline and large algae mats form within those 

http://landsat.usgs.gov/geometry.php
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lakes.  The NDWI of those lakes can be negative. There are also miss-classifications of other land 

classes, such as built-up land (Xu, 2006). Water features are more pronounced in the short-wave 

infrared bands of satellite sensors. Xu (2006) therefore proposed a modified version of the NDWI, 

the Modified Normalized Difference Water Index (MNDWI), using a SWIR-band instead of the 

NIR-band: 

 

𝑀𝑁𝐷𝑊𝐼 =  
𝐺𝑟𝑒𝑒𝑛 − 𝑆𝑊𝐼𝑅

𝐺𝑟𝑒𝑒𝑛 + 𝑆𝑊𝐼𝑅
 

 

In the study region the MNDWI and the SWIR-bands in general are less affected by algae or solubles 

within the water, compared to the NDWI or the NIR-band. However, the MNDWI indicated shore 

areas as water that cannot be visually perceived as water. Supposedly those are either areas with a 

thin layer of water on top or wet sediments. As both indices, the NDWI and the MNDWI, resulted 

in false or no classification in the direct vicinity of the lakes, the SWIR spectral range was used solely 

in this study instead of a band ratio. Classification was done on Landsat images from the Landsat 4 

and 5 sensors. The band that is used is the first SWIR-band (band 5 for Landsat 4-5). The intensities 

of that band are thresholded to create a binary mask with the value 1 for water and zero for other 

land classes. As mentioned above, the threshold is quite variable. In order to automatically process a 

large amount of images, the threshold would have to adapt to changing scene characteristics. One 

option would be Otsu’s methods (Otsu, 1979). The SWIR-histogram of most satellite images with 

water resembles a bimodal distribution, whereby water is one distribution and other surface types 

form a second distribution. Otsu developed a thresholding method to separate those distributions. In 

reality, however, the bimodal distribution is barely pronounced and the method fails to provide a 

reliable threshold. We found no other method to automatically adapt the threshold for every scene in 

a way that water is doubtlessly classified. Instead of using an adaptive threshold, one can also adjust 

all images to varying sensor parameters, e.g. the sensor-specific gain or the angle of the solar 

irradiation (compare Eq. 1 and Eq. 2), as variations of those parameters result in image intensity 

deviations of the same target. Nelson (1985) proposed a transformation of Landsat data to 

reflectance values in order to reduce inter-scene variability, as it is described by Chander and 

Markham (2003). During the processing of level-1G Landsat products pixel values are first converted 

to absolute radiance and then to 8-bit integer digital number (DN) values. DN-values can be 

converted back to radiance with the Landsat metadata that is provided with every Landsat product, 

as follows: 
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𝐿λ =  𝐺𝑟𝑠 ∗ 𝑄𝑐𝑎𝑙 + 𝐵𝑟𝑠 

 

where 𝐿λ is the radiance, 𝐺𝑟𝑠 is the rescaled sensor gain, 𝐵𝑟𝑠 is the rescaled sensor bias and 𝑄𝑐𝑎𝑙 is the 

pixel value as DN. With the additional information in the metadata, the planetary reflectance 𝜌𝑝 can 

be calculated from the radiance:  

 

𝜌𝑝 =  
𝜋 ∗ 𝐿λ ∗ 𝑑²

𝐸𝑆𝑈𝑁λ ∗ cos 𝜃𝑠

 

 

where 𝑑 is the earth-sun distance, 𝐸𝑆𝑈𝑁λ is the mean solar exoatmospheric irradiance (values from 

Chander and Markham, 2003) and 𝜃𝑠 is the solar zenith angle in degrees, that is the difference of 90° 

minus the solar elevation (given in the Landsat metadata). 

All Landsat images of the SWIR-band are converted to the top-of-atmosphere (TOA) reflectance 

and then segmented into water and non-water areas based on a threshold that captures the variability 

of water reflectivity. While most water pixels have very low intensities in the SWIR-reflectance, there 

are many pixels that show significantly higher values, either due to algae, solubles or due to mixing 

with other land types within the same pixel. The used threshold was empirically chosen to capture 

the complete range. This implies that there are also misclassifications of mostly cloud and mountain 

shadows. To avoid some of the false classifications, especially hillslope shadows, pixels with a slope 

larger than 20° are masked out. Slopes are calculated from the SRTM-30m digital elevation model 

(DEM). Originally a critical slope threshold of 5° was intended. However this led to masking out 

parts of the lakes in mountainous regions as (1) pixels of the DEM can be offset to the Landsat 

images and (2) the maximum lake extent can exceed the lake size at the time of the STRM recording 

(February 2000) and previously exposed hillslopes are covered by water during other periods within 

the timeframe. 

The extraction of lakes from Landsat imagery requires additional steps to finally derive the time-

series of lake areas. There are two parts of a program that was developed with Matlab and the 

Geospatial Data Abstraction Library (GDAL) python bindings. The first part (Fig. S2) creates, based 

on a cumulative classification of all images, an initial lake mask, which is afterwards used in the 

second part (Fig. S3) to compute the distinct areas of the lakes in every image. 
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B.1. Multi-temporal cumulative classification 

At first, due to differences in the inter-scene sizes of Landsat products, all images of a scene are 

clipped to their minimum extent. This not only excludes areas that are not present throughout the 

complete stack, but also registers the images in the intrinsic image space, which is necessary for later 

processing. As the images are registered a visual inspection indicates images that are not precisely 

georeferenced or geometrically distorted. These images are deleted and the stack is reevaluated and 

clipped again. To get an idea of the occurrence and the distribution of lakes within the timeframe of 

30 years, a first script loops through every image and cumulatively adds classified water to an initial 

water mask. As mentioned earlier, the classification of water is done by thresholding SWIR-

reflectance intensities. The reflectance images are binarized using a threshold of t1=0.05. A scene 

specific water mask is created by replacing all pixel values below that threshold with 1 and others 

with 0. In an additional step, pixels with a slope larger than 20° are also set to 0 to avoid 

misclassifying hill shadows. The extent of the clipped Landsat scene is used to crop the SRTM-DEM 

of the Central Andean Plateau and compute a slope map for the image region. In the process, the 

water mask of every image is added to an initial water mask (cumulative version) in order to not only 

find the maximum extent of every lake, but also to get an idea about the occurrence throughout the 

studied period. A binarized version of this initial water mask is converted to a shapefile with gdal, 

where all water bodies are separate polygons. This shapefile, as well as the cumulative initial water 

mask and additional satellite images are used to select the lakes of interest in a Geographical 

Information System (GIS) and to create a reference lake mask. The manual selection was necessary 

to delete small ponds, transient water bodies, river segments, as well as a large number of falsely 

classified mountain and cloud shadows. Some lakes have been manually edited, where nearby 

hillslope shadows or glaciers and snow have been falsely classified as part of the respective lakes. 

 

B.2. Single-temporal lake classification 

The first part is intended to give an estimation of where lakes have been present within the last 30 

years, but does not give insights on the exact lake extents at every date covered by the Landsat 

images. The second part uses the reference lake mask and calculates the respective lake areas 

throughout the images. The updated reference lake mask shapefiles are first rasterized to create a 

binary lake mask that indicates the location of the selected lakes. Afterwards the lakes of all scenes 

are labeled and assigned an unique index in a reference water mask. The algorithm then loops 
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through the reflectance images of every stack and classifies water as described in the previous 

section, but only in the areas where the water mask assumes water. Every classified object is labeled 

according to the corresponding index in the reference water mask. Finally the amount of pixels for 

every object is calculated and together with the image resolution the area of every lake can be 

calculated. 

 

C. Hierarchical clustering analysis 

We derived 1058 lake-area time series from the lake classification process, but assume that several 

time series show either systematic errors or specific errors at certain acquisition dates, that are related 

to the semi-automatic classification, but also to the averaging to 3-month intervals. To increase the 

robustness of the latter analyses, we decided to combine lake-area time series with a similar 

coevolution. For this matter we used the hierarchical clustering analysis (HCA; e.g. Jain et al., 1999; 

Manning et al., 2008; Rokach and Maimon, 2010; Murtagh and Contreras, 2012) that agglomeratively 

connects similar time series until every time series is assigned to the same cluster. The iterative 

process of the HCA is as follows: First, each time series is assigned a unique cluster. Second, the 

unique time series clusters are combined based on a distance metric (e.g. Murtagh and Contreras, 

2012), which is a measure for similarity. In this study similarity is expressed as the correlation of the 

lake-area time series. The distance (d) is the arcos of the Pearson correlation coefficient r. The more 

different (similar) time series are from each other, the higher (lower) the angle in vector space and 

the distance between time series. In the further iterations, as clusters consist of more than one time 

series, a linkage criterion is used to in addition to the distance metric to merge clusters (Table S2).  

We chose the average linkage criterion for our study. The complete linkage criterion tends to 

generate many small clusters and is very sensitive to outliers as the maximum distance is considered 

when combining clusters. As we assume errors and uncertainties within our dataset, the complete 

linkage criterion is not suitable for the clustering of the lake-area time series. The single linkage 

criterion tends to chaining effects and as it produces very large clusters. As this might override 

apparent differences in the lake-area time series, we further decided against the single linkage 

criterion. The distance between two time series cluster (u,v) and its cardinalities with the average 

linkage criterion and the distance metric d for all time series (i,j) within both clusters is then given by: 
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𝑑(𝑢, 𝑣) = ∑
𝑑(𝑢[𝑖], 𝑣[𝑗])

(|𝑢| ∗ |𝑣|)
𝑖𝑗

 

Correlation coefficients of the time series have been calculated pairwise, whereby rows of a pair with 

no value have been ignored. Additionally lakes with more than 80 percent of either no occurrence or 

no value within the 3-month intervals have been deleted. The stepwise aggradation of time series to 

common clusters is represented by a dendrogram that plots the distance versus the time series 

clusters. At a distance of d=0, every time-series is assigned to its own cluster and every node in the 

consequent cluster merging process represents the unification of two clusters and the height 

indicates the average distance of both clusters. The dendrogram can be cut at every distance in order 

to either get a specific number of clusters or to ensure an average distance of the obtained clusters. 

We thresholded the dendrogram at three different distances (d1 = 1.5, d2 = 1.35 and d3 = 1.08) in 

order to get different amounts of clusters (2, 3 and 7, respectively, after the removal of outlier 

clusters). Clusters that contain less than 10 lake-area time series and have a large spatial spread have 

been removed as they are regarded as outliers. 

The distance (d) at which we cut the dendrogram indicates that the cluster specific lake-area time 

series correlate on average with cos(d). This however implies that there can be time series pairs of the 

same cluster that have much lower correlation coefficients, as it is indicated by Fig. C1 and Fig. C2. 

The correlation matrices (Fig. C1) show that several time series pairs do not correlate at all, even 

though they belong to the same cluster. In order to find lake-area time series that generally correlate 

poorly with the other time series of a cluster, we averaged the sums of the correlation matrix rows. 

This gives, for every lake-area time series of a cluster, the mean correlation coefficient (rCML) within 

the same cluster. Lakes of a cluster with rCML< 2σ are regarded as outlier and are removed (Fig. C2). 

This process removed several lake time series of C32 but only few of the other clusters. The removal 

was applied to increase the quality of the average time series of every cluster (mean cluster time 

series). 

 

D. Cluster mean difference time series 

To facilitate inter-annual comparisons within a mean cluster time series, we calculated the 

corresponding difference time series that represent the difference of a measurement to the preceding 

measurement. Any apparent trends within the mean cluster time series are removed in the difference 
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time series. If X is a mean cluster time series of length m and Y is the difference time series of X, 

then the mean cluster difference time series (Y) can be calculated as:  

 

Y(i-1) = X(i) – X(i-j), 

whereby j (0<j<i) represents the distance to the last measurement and i (i = [2,3,…,m]) represents 

the measurement index of the time series and therefore a 3-month interval. The resulting mean 

cluster difference time series are shown in Fig. S6. In order to keep the length of the mean cluster 

time series, the difference time series are appended by NaN at Y(1).  

We further summed the positive difference (Y(i)>0) of every year, i.e. from DJF to the subsequent 

DJF season. The yearly sums of the positive difference represent the annual lake growth time series 

that cumulate annual increases in lake areas within the DJF season of a year under the assumptions 

that most rainfall over the CAP occurs in austral summer. The annual lake growth time series 

indicate how much total area a lake gained throughout a year. 

 

E. Cross-correlation with climate indices 

We performed cross-correlation analysis with several climate indices (Table S3) that represent change 

characteristics of the Atlantic and the Pacific Ocean in order to decipher any apparent relationships 

between large-scale oscillations of the western Hemisphere and variability of lake sizes in the Central 

Andes. As a correlation metric we used the Pearson correlation coefficient with a minimum 

(maximum) lag of 0 (6) months and with a step length of 1 month. Since the mean cluster time series 

consist of 3-month intervals, we had to adapt the climate index time series, which are sampled in 

monthly steps, for every lag. When the lag increases by 1 month, the monthly climate index time 

series is shifted by 1 month and the months, which overlap with a 3-month bin of the cluster mean 

time series, are averaged. The resulting cross-correlation plots are shown in Fig. S7. Significance was 

tested at the 95% level by comparing correlation coefficients with values obtained from correlations 

of the climate index time series with 10000 random permutations of the cluster mean time series. 

The cross-correlations reveal several significant correlations, especially with the Nino-indices 

(Nino12, Nino3, Nino34, Nino4), but also with temperature anomalies of the Atlantic (TSA, TNA, 

AMO) or the Pacific (PDO). The previously mentioned climate indices show significant correlations 

with almost all clusters. In the case of Nino12, the cluster of the Altiplano (C31, C34, C35, C36 and 

C37) show moderate to strong positive correlation coefficients of around 0.5 within the first 3 
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months and moderate negative correlations of around -0.3 after that. C33 is shifted with a strong 

negative correlation (r ≈ -0.6) at lag=0 and strong positive correlations (r ≈ 0.6) at lag=5. The results 

for the other Nino-indices are similar but shifted. With Nino12 being farthest to the East and Nino4 

farthest to the West, the cross-correlations not only decrease in amplitude but also shift towards 

smaller lags. Hence the Nino4 region shows no more positive correlations with the Altiplano in the 

first 3 months but with the southwestern Puna (C33). The PDO shows mainly positive correlations 

with C31, C32, C33, C34 and C35, but also negative correlations with C36. Cross-correlations with the 

TSA are positive in the northern CAP (C34, C35, C36 and C37) and negative in the southern CAP 

(C31, C32 and C33). C36 shows the strongest positive correlations with the TSA (r ≈ 0.5). For the 

southern CAP the AMO shows similar correlations as the TSA, with maximum negative correlations 

(r ≈ -0.5) in the northeastern Puna (C32). The only positive correlation of the AMO-index is 

observed in C36. ENSO-indices (MEI, BEST) show only few significant and weak correlations with 

C33, C36 and C34. Only few significant correlations are also observed for the AAO-index (C36) and 

the indices covering the pressure differences over the Pacific, the SOI and the EQSOI (C32 and C36) 

The strong correlations with the Nino indices however do not necessarily support an influence of 

ENSO periods on lake size variability. We argue that the correlations are related to similar 

oscillations of the Nino time series and the lake area time series with increasing lake sizes 

(temperatures) in the Central Andes (eastern Pacific Ocean). This is especially obvious comparing 

C33 and Nino12 (Fig. D2), which are strongly anti-correlated, as the largest lake areas occur in austral 

winter when temperatures in the eastern Pacific reach their lowest point throughout the year. Despite 

correlations with TSA and AMO it is not evident that positive or negative anomalies in either of 

both climate indices generally coincide with positive or negative anomalies in lake sizes. The strong 

negative correlations of AMO and C32 that do not change strongly at different lags may rather show 

an inverse development with a positive (negative) linear trend of the AMO (C32) within the last 30 

years that may be contributed to similar forcing, e.g. rising global temperatures that warmed the 

northern Atlantic and lead to the continuous reduction of lake areas in the northeastern Puna.  

 

 

 

 

 

 

 



44 
 

List of References 

Chander, G., Markham, B., 2003. Revised Landsat-5 TM Radiometrie Calibration Procedures and 
Postcalibration Dynamic Ranges. IEEE Trans. Geosci. Remote Sens. 41, 2674–2677. 
doi:10.1109/TGRS.2003.818464 

Jain, a. K., Murty, M.N., Flynn, P.J., 1999. Data clustering: a review. ACM Comput. Surv. 31, 264–
323. doi:10.1145/331499.331504 

Manning, C.D., Raghavan, P., Schütze, H., 2009. Hierarchical clustering. Introd. to Inf. Retr. 377–
401. doi:10.1017/CBO9780511809071.017 

McFeeters, S.K., 1996. The use of the Normalized Difference Water Index (NDWI) in the 
delineation of open water features. Int. J. Remote Sens. 17, 1425–1432. 
doi:10.1080/01431169608948714 

Murtagh, F., Contreras, P., 2012. Algorithms for hierarchical clustering: An overview. Wiley 
Interdiscip. Rev. Data Min. Knowl. Discov. 2, 86–97. doi:10.1002/widm.53 

Nelson, R.F., 1985. Sensor-induced temporal variability of Landsat MSS data. Remote Sens. Environ. 
18, 35–48. doi:10.1016/0034-4257(85)90036-7 

Rokach, L., Maimon, O., 2010. Chapter 15— Clustering methods. Data Min. Knowl. Discov. 
Handb. 32. doi:10.1007/0-387-25465-X_15 

Xu, H., 2006. Modification of normalised difference water index (NDWI) to enhance open water 
features in remotely sensed imagery. Int. J. Remote Sens. 27, 3025–3033. 
doi:10.1080/01431160600589179 

 

 

 

 

 

 

 

 

 

 

 

 



45 
 

List of Figures 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure S1:  Overview of the Central Andean Plateau and the corresponding Landsat scenes. Path/row   

  combinations are labeled respectively. 
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Figure S2: Scheme of the cumulative water classification that shows the processing steps to get an initial lake  

  mask from a stack of Landsat images. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure S3: Scheme of the specific water classification that shows the processing steps to compute date specific  

  lake areas from the previously calculated initial lake mask and the Landsat reflectance images. 
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Fig. S4: Matrices of Pearson correlation coefficients for every cluster that indicate the correlation of a lake with the

 other lakes of the same cluster. 

 

 

 

 

 

 

 

 

 

 

 



48 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. S5: Overview of the cluster mean lake correlation coefficients (rCML) and 2σ boundaries. The lower 2σ boundary 

 acts as a threshold for the outlier detection. Lakes below 2σ were removed from the clusters. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. S6: Mean cluster difference time series for every cluster. Plots show the lake areas as z- scores vs. the year. 
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Fig. S7: Mean cluster difference time series for every cluster. Plots show the lake areas as z- scores vs. the year.  

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. S8: Cross-correlation of MEI and mean cluster difference time series of every cluster for lags of 0-6 months  
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Fig. S9: Time series of the Salar de Uyuni in Bolivia from 1985-2011.  
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List of Tables 

 

Band  Wavelength [µm] Resolution [m] 

1 – Blue   0.45-0.52 30  

2 – Green   0.52-0.60 30  

3 – Red  0.63-0.69 30  

4 – Near Infrared  0.76-0.90 30  

5 – Short-wave infrared I  1.55-1.75 30  

6 – Thermal Infrared  10.41-12.5 120  

7 – Short-wave infrared II  2.08-2.35 30  

(http://landsat.gsfc.nasa.gov/the-thematic-mapper/) 

 

Table S1:  Landsat band designations with the corresponding wavelengths and the spatial resolution   

   

 

 

Linkage criterion Formula 

Complete (maximum) linkage 

 

𝑑(𝑢, 𝑣) = max (𝑑(𝑢[𝑖], 𝑣[𝑗])) 

 

 

Single (minimum) linkage 

 

 

𝑑(𝑢, 𝑣) = min (𝑑(𝑢[𝑖], 𝑣[𝑗])) 

 

Average linkage 

 

 

𝑑(𝑢, 𝑣) = ∑
𝑑(𝑢[𝑖], 𝑣[𝑗])

(|𝑢| ∗ |𝑣|)
𝑖𝑗

 

https://docs.scipy.org/doc/scipy-0.18.1/reference/generated/scipy.cluster.hierarchy.linkage.html 

 

Table S2:  Different linkage criteria and corresponding formulas for the distance metric (d), the clusters (u,v), the 

  cardinalities of the clusters (|u|,|v|) and the points within the clusters (i,j). 

 

 

 

 

 

 

http://landsat.gsfc.nasa.gov/the-thematic-mapper/
https://docs.scipy.org/doc/scipy-%09%09%090.18.1/reference/generated/scipy.cluster.hierarchy.linkage.html
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Climate Index Source 

AAO - Antarctic Oscillation Index Temperature Anomalies (Antarctic Ocean) 

AMO - Atlantic Multidecadal Oscillation Index Temperature Anomalies (Northern Atlantic) 

BEST - Bivariate ENSO Timeseries Index Pressure and Temperature Anomalies (Pacific) 

EQSOI - Equatorial Southern Oscillation Index Sea Level Pressure Differences (East/West Pacific) 

MEI - Multivariate ENSO Index Sea Level Pressure, Wind Fields, Air and Sea 

Temperatures, Cloudiness (Pacific) 

Nino12 - Nino12 Temperature in the Eastern Pacific 

Nino3 - Nino3 Temperature in the Eastern/Central Pacific 

Nino34 - Nino34 Temperature in the Eastern/Central Pacific 

Nino4 - Nino4 Temperature in the Eastern/Central Pacific 

ONI - Oceanic Nino Index Temperature Anomalies (Eastern/Central Pacific) 

PDO - Pacific Decadal Oscillation Index Temperature Anomalies (Northern Pacific) 

SOI - Southern Oscillation Index Sea Level Pressure Differences (East/West Pacific) 

TNA - Tropical North Atlantic Index Temperature Anomalies (Northern Atlantic) 

TSA - Tropical Southern Atlantic Index Temperature Anomalies (Southern Atlantic) 

(http://www.esrl.noaa.gov/psd/data/climateindices/list/)  

 

Table S3:  Overview and description of climate indices used in our study 

 

 

Cluster Index Linear Regression Coefficient (β) p-value 

1 -0.005 0.063 

2 -0.015 2.263e-11 

3 -0.003 0.261 

4 -7.495e-4 0.776 

5 -0.006 0.084 

6 0.009 9.148e-4 

7 4.936e-4 0.735 

 

Table S4:  Regression coefficients from weighted linear regression of the mean cluster time series of every cluster. 

  Significance was tested with a t-test distribution. 

 

 

 

 

http://www.esrl.noaa.gov/psd/data/climateindices/list/
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