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Abstract

The goal of this work is the development of an algorithm to detect freshwater
ice in Scandinavia using Sentinel-1 data. The best result was gained by using
time series analysis of Ground-range detected data. The lake wide mean of the
ratio of the two bands (VV/VH) that get captured in the Interferometric Wide
Swath mode shows an significant increase compared to the long-term mean
once the ice is freezing. Using different programs and environments the pro-
cess of downloading, processing and analysing the data could be automated.

Keywords— Sentinel-1, Radar, Ice, Remote Sensing, Scandinavia, Time series
analysis, IW, GRD

Zusammenfassung
Ziel dieser Arbeit ist die Erstellung eines Algorithmus zur Detektion von
Süßwassereis in Skandinavien unter Nutzung und Verarbeitung von Sentinel-
1 Daten. Das beste Ergebnis wurde durch eine Zeitreihenanalyse der Ground-
Range detected Daten erzielt. Das Verhältnis der zwei Bänder (VV/VH), welche
im Interferometric Wide Swath mode aufgenommen werden, zeigt einen sig-
nifikanten Ausschlag im Vergleich zum langzeitlichen Mittel dieses Wertes.
Verschiedene Programme und Umgebungen wurden genutzt, um den Ablauf
von Download, Verarbeitung und Analyse automatisiert zu gestalten.

Schlüsselwörter— Sentinel-1, Radar, Eis, Fernerkundung, Skandinavien, Zeitrei-
henanalyse, IW, GRD
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1 Introduction

1.1 Background information

This work is done as a part of the NASeR-project (Near-real time Analysis of
Satellite data for epidemiological Risk assessment) of the Friedrich-Löffler-
Institute (federal research institute for animal health). The insitute is inter-
ested in the migration of birds from Scandinavia (Figure 1.1) heading south
via Germany. Once lakes in Scandinavia are freezing in the winter the local
birds are moving southwards. Bird ringing data showed that the birds are
migrating via Germany. Since these birds are suspected of spreading bird flu
it is worthwhile to study their migration patterns. Scientists are interested in
an easily accessible way to determine when the birds are starting to migrate.
This should be used to inform farmers to take preventative measures and
minimize risks for their animals. Optical satellite data has been used in the

FIGURE 1.1: The area of interest that should be investigated.
The outline shown is provided by the Friedrich-Löffler-Institute
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past to explore lakes and check if they are frozen. Unfortunately Scandinavia
is affected by the polar night during winter and before the polar night starts it
is often covered by clouds, therefore optical data is often not available, when
radar is.
Due to its independence from weather conditions, RADAR observation is the
most reliable way to generate data in Scandinavia in winter [1]. Starting in
2014 (Sentinel-1 A) and 2016 (Sentinel-1B) ESAs satellite pair of Sentinel-1
is providing radar data for the whole Earth. The high temporal resolution
of maximum 6 days between two observations increases the usefulness for
this study since the freezing of the lakes can happen on smaller timescale for
most lakes [2, 3].The data is available for free and can be downloaded from
the Copernicus-Webservice
(https://scihub.copernicus.eu/).
The goals of this work are (1) to create an algorithm to detect the date of
freeze-up of lakes in Scandinavia in near-real time and (2) get an idea of the
ice extent of the lakes.

1.2 State of the art

Freeze-up dates are highly influenced by thermal conditions, the air tem-
perature above a lake is determining if a freeze-up is possible [4]. Bigger
lakes are able to store more heat and thus will freeze later [2]. Lake area is
also important since smaller lakes tend to freeze over when the bulk tem-
perature is higher (2-3° C) whereas big lakes need to have a temperature of
1°C. Lake depth and volume play an important role as well for heat transfer
and exchange [5]. Tracking the actual freeze-up is really difficult since lakes
can freeze completely within hours once the bulk temperature of the lake is
reaching 4° C [3]. Calm, clear and cold nights in Siberia resulted in freezing
in late August which used to dissipate once the sun was risen [6]. Small bays
often freeze first but are disturbed by waves and wind that can lead to cracks
[3].
Different approaches using different radar satellites were developed in the
past to detect lake ice. Radar antennas are designed to transmit electromag-
netic waves of a chosen polarisation. Most radars are using horizontally (H)
or vertically (V) polarised waves, some use circular polarisations [7]. When
the wave gets scattered on the ground, the polarisation can change, which
leads to differently polarised backscatter. This backscatter is again horizon-
tally or vertically polarised. The naming convention for this systems is for
example: HH is transmitted and received horizontally, VH is a wave that
is transmitted vertically polarised and received horizontally. Different satel-
lites are using different polarisations. Both polarisations of Sentinel-1 (VV
and VH) are interacting differently with the surface of the lake if it is frozen
or not, since the dielectric properties of water and ice differ [8]. Not only do
ice and water have different effects on the backscattering, waves tend to in-
fluence the signal in both VV and VH. VH values are less sensitive to waves
and thus wind [2, 9].
The reflection of the wave on ice is also influenced by other factors such as ice

https://scihub.copernicus.eu/
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type [10, 11], ice thickness [4, 5, 11], the crystallographic type of the ice [3, 10],
the wetness of a potential snow cover of the ice [1, 6, 10, 12, 13], lake depth
[4], the frequency of the incoming signal (which is at least more or less fixed
for the same satellite), the incidence angle [14, 15] and whether the satellite
is in ascending or descending orbit [10].
In higher latitudes dry snow is more common than wet snow [13]. Not only
the thickness of a potential snow coverage is important. If the snow is wet,
it interacts with the radar signal in a way that prevents it from reaching the
ice/water interface and thus the reflection is not influenced by the lake sur-
face but absorbed by the snow. Dry snow is penetrated by SAR and thus
the returned waves will display the lake surface [12]. The two polarisations
of Sentinel-1 are also interacting differently with dry and wet snow [16]: Dry
snow is not really influencing VV values since the snow is penetrated and the
interaction of the water/ice boundary with the wave is consistent. VH val-
ues are influenced by the accumulation of snow. An increased depolarization
through scattering is leading to an rise of the intensity of VH [6, 10, 13, 17].
Investigations at Lake El’gygytgyn in Siberia showed that the underlying to-
pography and related to this bioactivity is influencing the backscatter [6].
Higher bioactivity is leading to more bubbles of CO2, O2 and CH4 [18] in
the ice and thus higher reflectances [5, 6, 18, 19, 20]. Rough surface condi-
tions of ice, like in cracks in the ice, increase the reflected magnitude since
the backscatter is a combination of surface backscatter and volume backscat-
ter. Thus the signal that is reaching the antenna has a higher magnitude
[4, 17, 21]. Once the ice is freezing to the ground of a lake, a decrease in
backscatter is observed. This is due to the absorbtion of the signal by the un-
derlying ground [5, 6, 22, 23]. Data shows an increase in sigma naught of the
HH values for RADARSAT-2 at the start of ice formation [10], VV values of
the Quicksat satellite tend to increase at ice-on events as well [2]. But there
are some complications occurring when using radar data (HH). There is a
low difference between sigma naught values between open water and newly
formed ice [10]. A known problem of fresh ice detection using radar is the
very little interaction of newly formed ice with radar waves [21], which re-
sults in low backscatter in both VV and VH for thin, flat surfaced ice [9]. This
is due to the limited scattering at the smooth water-ice boundary [21]. Sigma
naught of co-polarized waves was found oscillating during ice formation and
increasing once ice is melting due to the roughing of the surface [2, 10]. Af-
ter ”evolving“ to sheet ice the ice has a smooth underside but with variable
degrees of dielectrical discontinuities. Since the waves are back-scattered by
surface scattering, volume scattering or a combination of both the backscat-
ter levels are varying a lot [21].
Previous studies have shown the influence of meteorological data on the
backscatter, even though Sentinel-1 is supposedly be weather independent.
Higher wind speed shows higher backscatter [4, 10] and the SAR look direc-
tion relative to the wind direction is also influencing the backscatter. This was
shown for RADARSAT-2 data [4], but could also have influence on Sentinel-1
data. The air temperature is also showing a strong negative correlation to the
backscatter/sigma naught values for RADARSAT-2 data [10].
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Threshold values for the VV-band of ERS 1 data [5] were used to determine
the freeze-up of lakes. But they are adjusted for every scene due to different
orbits and incidence angles [15, 24]. The ice conditions have minor effects on
the threshold [24]. Another used approach is a threshold defined by the mean
sigma naught of the first 90 days of a year plus a value X for HH values of
RADARSAT-2 data [10]. Wet snow or liquid water above a potential ice cover
affect the usability of the thresholding. Floating ice looks like ground-fast ice,
if it is covered by water [17].
Different scientists have different opinions on the viability of cross-polarized
data for freezing-periods. Some say it should not be used [25], others use it
to distinguish between ice and open waters due to lower sensitivity to wind
effects [2] but the best approach should be the usage of VV of Sentinel-1 [4].
An unsupervised classification algorithm (K-means classifier) was used on
radar data for lakes that were known to be partly frozen. Three classes were
differentiated due to their backscatter properties in co- and cross-polarized
channels [24]. The three classes that were assigned are water, ice and wavy
water due to the higher sensitivity of the co-polarized data to wind that is
not present in cross-polarized data [11].
The basic idea of this approach is to get three classes (see Table 1.1) that have
the following properties [25]:

Band Water Wavy water Ice

VV Low High High

VH Low Low High

TABLE 1.1: Relative VV and VH values for different surface
states

Once the scenes are classified the two classes having comparable low VH-
backscatter values are combined for a water class [25]. Using additional filter-
ing can help to decrease the misclassification due to melting pods but would
also decrease the sharpness on the transition from ice/water [24]. This ap-
proach showed, unfortunately, that it is not that good for different ice states,
snow coverage and problematic output once less than 3 classes are present,
e.g. a full snow cover on a lake [25].
Using the SLC data of Sentinel-1 offers the possibility to use SAR interfer-
ometry if the surface is nearly uniform and thus not much scattering due to
cracks is present [22]. Since the data has to be taken from the same orbit
to perform interferometry the temporal resolution is below the GRD-using
approaches and the amount of data that has to be used is higher. (One GRD-
scene 1 GB, one SLC-scene 4 GB) The coherence of a pixel over two time
steps with the same orbit was used as a threshold and if the coherence was
below 0.3 the pixels got assigned “ice”. If wavy water is present the coher-
ence is nearly the same as for sheet ice or deformed ice, but a distinction
between sheet ice and water is possible using additional wind data [21]. The
incidence angle of the incoming wave is irrelevant since the orbits are the
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same for each coherence-estimation [21]. Once the lakes are ice covered in
both scenes the coherence rises, but there are environmental changes that in-
fluence the coherence. Snowfall [26, 27], changing water levels, cracks in the
ice and a changing ice dynamic have shown to influence the coherence for
Sentinel-1 data [26].
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2 Data and Methods

2.1 Sentinel-1

Sentinel-1 is scanning the surface of the earth using a single, right-looking
C-band synthetic aperture radar (SAR) instrument (5.405 GHz centre fre-
quency). The SAR instrument can work in dual-polarisation (HH + HV and
VV + VH) but is only using single polarisations most of the time, depending
on the acquisition mode [28].
The raw data is processed by the Instrument Processing Facility (IPF) to pro-
duce level 1 products which are most common. The processing consists of
pre-processing, doppler centroid estimation and single-look complex focus-
ing [29]. All products provide a calibration vector and information about the
time of the acquisition (center of the image).
Sentinel-1 has 4 different acquisition modes [30]: (1) Stripmap (SM), (2) Inter-
ferometric Wide swath (IW), (3) Extra-Wide swath (EW) and (4) Wave mode
(WV).

• Stripmap mode
The stripmap mode is illuminating an 80 km wide swath by a continous
sequence of pulses. The results of the stripmap mode have a spatial res-
olution of approximately 5m x 5m (single look) and contain dual (HH
+ HV and VV + VH) or single polarisations (VV + VH). It is only acti-
vated for imaging small island or in emergency cases [31].

• Interferometric wide swath
The interferometric wide swath mode is the main acquisition mode
used over land producing swaths with 250 km width, the spatial res-
olution of single looked scenes is approximately 5m x 20m. Images are
captured in three sub-swaths using TOPSAR [32]. Using this technique
results in constant image quality for all swaths but the azimuth resolu-
tion is reduced in comparison to stripmap, since the illumination time
is decreased [33].

• Extra-Wide swath
The Extra-Wide swath mode is used mainly to cover polar regions and
sea ice. The EW mode is using the TOPSAR technique to produce 5
sub-swaths covering a total width of 400km at 20m x 40m resolution
[34].
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• Wave mode
In Wave mode every 100 km a vignette of 20km x 20km at 5m by 5m
spatial resolution is captured. Two consecutive scenes are taken at near-
range ( 23°) and far-range ( 36°) containing either VV oder HH polar-
isation data. Over open ocean the main acquisition mode is the wave
mode in VV polarisation [35].

Since it is the most used acquisition mode and covers the lakes in Scandi-
navia, the IW mode is used in this work. There are two different level 1 prod-
ucts for the interferometric wide swath mode: Single-look complex (SLC)
and Ground range detected (GRD).

2.1.1 SLC products

Even though SLC data is captured in all acquisition modes, parts of the following
information is only true for the used IW SLC products.
Sentinel-1 Single-look complex data can be downloaded as images which
have been preprocessed by the ESA. Range processing and azimuth pre-
processing, processing and post-processing are performed [29].
The big advantage of SLC data in comparison to GRD data is that the phase
data is stored in an imaginary band, thus having both amplitude and phase
data for both VV and VH waves is increasing the amount of data. A down-
side is that more disk space is required (4 to 5 GB per scene in comparison to
1 GB per scene for GRD).
The products contain one image per polarisation channel and sub-swath re-
sulting in 3 to 6 images per scene. Each sub-swath contains the data of dif-
ferent bursts, that were processed as single SLC images beforehand and are
restricted in the sub-swaths by black demarcation zones.
IW SLC images are resampled to a single pixel-spacing in both azimuth and
range thus no resampling or interpolating has to be done in later stages of
processing [36].

2.1.2 GRD products

GRD products are processed further in comparison to SLC data: focusing, de-
tection, multi-looking and projection to an ellipsoid model of the earth have
been done. Due to the multi-looking the speckle in the product is reduced.
The pixel values of the approximate square pixels contain the magnitude in-
formation whereas the phase information present in the SLC data is lost.
Due to the presence of a noise vector annotation data set that is provided with
the images the thermal noise can be removed. All bursts within a scene are
merged together to create a single GRD product for each polarisation chan-
nel [29].
GRD data is produced in different resolutions: full resolution, high resolution
and medium resolution. For the IW mode only high and medium resolution
are available. High resolution imagery has a spatial resolution of slightly
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above 20 m x 20 m and a pixel spacing of 10 m by 10 m [37].
Sentinel-1 is a dual-polarization system that is capturing VV (co-polarized)
and VH (cross-polarized) information in IW mode.

2.2 Processing environments

2.2.1 SNAP

The Sentinel Application Platform (SNAP) is an architecture developed by
Brockmann Consult combining the different Sentinel Toolboxes. It is de-
signed to process and display big data (Giga-pixel images) from satellites
and offers a lot of different functions to process and analyse satellite data
[38].

2.2.2 Google Earth Engine

The Google Earth Engine (GEE) is both an archive for an incredibly big amount
of data and gives the possibility to apply algorithms to the data to create fast
results due to the big computational power [39]. GEE is not able to process
complex data yet, thus it is only usable for GRD data analysis and calcula-
tions.

2.2.3 ISCE

The Interferometric synthetic aperture radar Scientific Computing Environ-
ment (ISCE) is an open source software which was founded by the NASA. It
is currently able to process data gathered by eleven different platforms, in-
cluding Sentinel-1. [40]
ISCE can be installed using Anaconda under Linux. It is possible to use a
Windows Subsystem for Linux (WSL) to install ISCE. The WSL allows only
command-line processing but this is sufficient for my purpose, as the results
can be opened in any GIS.
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2.3 Ground Truth

Different approaches were used to get a ground truth of the observed lakes
to determine both where and at what point in time freezing took place on the
lakes. The first approach was to use the Sentinel-Playground with Sentinel-2
data because of the high temporal resolution and the free availability [41].
Different lakes were selected based on the availability of images in the freez-
ing period where freeze-on of the lakes was indicated.
Obviously for Scandinavian winters the amount of images where lakes are
free of clouds are few, but even if the lakes are visible it is not 100% accurate
because ice is not that easy to see on satellite images. Cracks or other ice
features increase the visibility of ice. Figure 2.1 shows a comparison of two
images from the “Müggelsee” where this problem is shown.
Both mentioned problems lead to imprecision of the exact date of freezing

FIGURE 2.1: Comparison of two Sentinel-2 False-Color-Images
(B8, B4, B3) the “Müggelsee” near Berlin in February 2018. The
images were edited the same way to increase the visibility of the
cracks. (1) On 6th of February the lake is covered by 30-50% ice.
(2) On 8th of February the lake has an ice cover covering 50%
of the lakes, but with cracks in it that make the ice easily rec-
ognizable. (Image source: https://services.sentinel-hub.com,

Ice-Data: IGB, see Appendix C)

but made it possible to get a rough time span of when the lake froze.
The freezing period was also compared to temperature data that was found
on the website www.timeanddate.com to get an estimate of when the lake
could have frozen in this period. In case the air temperature was significantly
higher than the freezing point of water the time span could be narrowed fur-
ther. Since there is no information about the source of the temperature data,
there is on guarantee that the data is correct. [42]
Ground truth data was also collected by the Leibnitz-institute for water ecol-
ogy and freshwater fishery in Berlin. The institute collected data near-weekly
during the freezing period of "Müggelsee" in February-April 2018 and they
provided near-weekly ice coverage data of “Großer Stechlinsee” and
“Nehmitzsee” from January 2009 onward. Unfortunately there was no com-
ment where the e.g. 50% of ice on the lakes occurred. The data can be found
in Appendix C. Thus I used the data in combination with satellite data if pos-
sible to get an eligible estimation of the ice extent. Figure 2.2 is showing the
location of the different lakes that were used to test or validate results. Lakes
in Germany, Finland, Sweden and Norway were investigated.

www.timeanddate.com
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FIGURE 2.2: The lakes that were investigated. The pink part is
located in Norway and showing the lakes (1)"Grossæ" (2)"Birte-
vatn" (3)"Grøssæ" (4)"Varosen" (5)Kjetebuvatn" and "(6)Topsæ".
Black is showing "Västra Laxsjön" (West) and "Östra Laxsjön"
(East). The white outlines are showing "Müritz" (East) and
"Barniner See" (West). In green you can see "Müggelsee" close
to Berlin. The blue color is showing "Nehmitzsee" and "Stech-
linsee" and in red "Lake Kyyjärvi" and "Peuralampi" in Finland

are shown.
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2.4 GRD products

Preprocessing in SNAP

Sentinel-1 Ground Range Detected (GRD) data is already preprocessed to a
certain degree by the ESA, but needs further processing to make different
products comparable. One approach for a standard workflow for the correc-
tion of the data gained by Sentinel-1 is shown in figure 2.3 and used here
[17, 43].

FIGURE 2.3: Standard workflow for processing of Sentinel-1
GRD data.

Apply-Orbit-File
With each Sentinel-1 scene orbit data is provided that is calculated before by
using the theoretical orbit of the satellite. In reality this data is not perfect
and therefore the European Space Agency (ESA) is providing precise orbit
files days to weeks after the image has been taken. Using this data is improv-
ing the quality of the product. Unfortunately this data is provided delayed
and is not usable in this project since we need a near real-time result and can
not wait for the precise orbit files.
SNAP provides automatic downloads for the precise orbit files which I used
but it is necessary to check the box “Do not fail if new orbit file is not found”
in case there is no new orbit file to be downloaded.
Without a new orbit file applying an orbit file might be unnecessary, but
should be mentioned as a processing step since it is part of a standard pro-
cessing chain for Sentinel-1 GRD products [43, 44].

Thermal Noise Removal
Sentinel-1 data can be disturbed by thermal noise that has to be removed.
Especially the intensity of the cross-polarized channel is susceptible for the
impact of thermal noise [45]. The operator is reducing the discontinuities be-
tween sub-swaths by normalisation of the whole Sentinel-1 scene [43].
Each Level-1 product comes with a noise look-up table (LUT) for all measure-
ments which can be used to produce noise profiles. Pixels that are between
different points in the LUT are calculated using bilinear interpolation.
The thermal noise removal operator can be used for both the removal and the
reintroduction of thermal noise to Sentinel-1 scenes [44], but was only used
to remove the initial noise in my work.
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Remove GRD Border Noise
The preprocessing of the raw data of Sentinel-1 products is – as stated earlier
– done by different IPFs. The IPF processing chain leads to artefacts at the
image borders which should be removed to get accurate results. Removing
these no-value pixels is done by using a threshold for every product pro-
cessed by an IPF version 2.9 or higher [46]. All images I downloaded from
2018 and later were processed by an IPF higher than 2.9 so the thresholding
method is used here.

Calibration
SAR calibration is performed to provide pixel values that are directly related
to the backscatter of the scene. This is necessary for quantitative use of SAR
data, whereas uncalibrated data can be sufficient for qualitative use [44]. Pro-
duction of level 1 images does not apply radiometric corrections which leads
to radiometric bias in the products which has to be removed. Radiometric
correction is necessary to produce comparable data of different times, differ-
ent sensors or same sensors in different modes [43].
Sentinel-1 data can be calibrated using information that can be found in the
product: a calibration vector is provided as a part of the product and the
simple conversion can be done. Look-up tables apply range-dependant vari-
ables adding to the calibration constants, there are four different LUT that
can be used for different results, namely β0, γ0, σ0 or digital numbers (DN)
[44]. I used σ0 in my work.

Speckle Filter
The quality of SAR images is lowered by speckle occurring on the images
that lead to increased difficulties in interpretation of the results. The speckle
is produced by interferences of waves reflected by elementary scatterers [47].
Snap offers a variety of speckle filtering methods (Boxcar, median, Frost, Lee,
Refined Lee, Gamma-MAP, Lee Sigma, IDAN) in the speckle filter operator
[44].
I am using the Refined Lee filter (Refined Local Statistics Filter) which is ap-
plying a local statistics filter on edge directed windows [47]. The filter is ac-
cepted as the best filter for single images, since it preserves edges and texture
information [43].

Terrain-Correction
SAR data is produced with different incidence angles thus it is necessary to
correct for the distorted distances in the images. Terrain correction is used to
adjust the image to get rid of the distortion and make an as good as possible
representation of the real world [43].
Applying terrain correction is adjusting the image by using both the orbit
files and a digital elevation model. In my case I used the ASTER 1sec GDEM
of the NASA Jet Propulsion Laboratory, because the SRTM, which would be
preferred due to better spatial resolution, is not covering the whole area of
interest [44].
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The used algorithm for terrain correction is the Range-Doppler terrain cor-
rection.
I set the output pixel spacing to 10 m and it is important to uncheck the
“Mask out areas without elevation” box, since lakes have no elevation in
some DEMs which would lead to errors in the result. A possible problem in
the terrain correction are hilly regions where micro-topography is complicat-
ing the terrain correction leading to geolocation errors. [48]. .

Preprocessing in the GEE

The preprocessing of the GRD data is done by Google before the data is us-
able in the GEE. The processing chain is comparable to the one I performed
using SNAP. The following steps are performed: Apply orbit file, GRD bor-
der noise removal, thermal noise removal, radiometric calibration and ter-
rain correction [49]. The Lee speckle filter is applied as well by using a code-
snippet written by Guido Lemoine (see Appendix A).



14 Chapter 2. Data and Methods

2.4.1 Time series

To survey if there is a threshold value or ratio that changes when a lake is
freezing I created time series for different combinations of bands. I investi-
gated the VV-values and VH-values themselves, the ratio VV

VH , a normalized
index VV−VH

VV+VH and the product VV*VH. Time series were created for single
points in the lakes and a lake-wide mean of the ratio was calculated.
I tested the approaches on different lakes both in the Google Earth Engine
and in SNAP. For the lake-wide mean different results were observed for
both processing parts.

2.4.2 Thresholds

To check if there are thresholds in any of the specified values/bands I used
the GEE to get values for frozen/not frozen pixels in lakes and define a
threshold by hand (see figure 2.4). This was previously done to differen-
tiate between ground-fast ice and floating ice, but could also be useful to
determine between water and ice [17].

FIGURE 2.4: Example for defining the threshold: (1)
False color composite (B8-B4-B3) of the "Großer Stech-
linsee" and "Nehmitzsee" in Brandenburg (source:
https://services.sentinel-hub.com). (2) Screenshot of the
GEE interface. The red dot is showing the location that was
picked, in this case it is obviously a frozen part of the lake. The
small box shows the values for different bands (the 6th band is

the removed angle band).

This was done for several lakes, trying to transfer the found thresholds to
other lakes or get a good fit for more than one lake.
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2.4.3 Unsupervised classification

According to the initial idea of different responses of the three different types
of lake surface, namely calm water, wavy water and ice, different unsuper-
vised classification algorithms were used in the GEE. I tried to run it in SNAP
on my local computer but it took way too much time to be usable. Classifi-
cation was done on the lakes only, so the land pixels will not be taken into
consideration and create their own classes.
The GEE is offering different methods for the unsupervised classification that
were tested. My results showed that the best of the different algorithms that
is usable in the GEE was the K-Means-Classification based on the weka algo-
rithms [50]. This clustering algorithm is one of the most used techniques in
related research, which is the reason I focused on it. Additionally, the com-
paratively fast calculations and the good fit for large scale data strengthened
my decision [24]. Due to the usage of relative comparison the absolute values
of VV and VH are not important, which reduces the influence of the orbit, in-
cidence angle and lake size [24, 25].
The clustering is based on creating K groups inside the data set, each consist-
ing of one single point to start with. All other points get assigned due to the
smallest distance of the point to the center of any group. The center of the
group is the mean, thus the term K-Means. After each added point the mean
of the group is recalculated. Different iterations through all points make sure
that no point is only assigned because it was calculated early[51].
This algorithm is further improved by using the kmeans++ method, which is
using a randomized seeding of the initial centroids. This is expected to lead
to better results in the end [50].
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2.5 SLC products

2.5.1 Interferometry

Interferometric synthetic aperture radar (InSAR) uses the phase difference
between two images with the same orbit over the same area at different
times [22]. SLC data consists of amplitude and phase bands, whereas the
amplitude is an indicator for the strength of the signal while the phase is an
indirect indicator for the distance between the satellite and the earth’s sur-
face [52]. The phase is a value between 0 and 2 Pi since it is a fraction of a
full wave cycle [53]. The phase difference is mainly based on differences in
topography, thus InSAR can be used to create high resolution digital eleva-
tion models.
An important step in processing interferograms is the perfect alignment of
the scenes to ensure the calculations are done correctly [9]. Interferogram
formation is done by cross multiplying the master image with the complex
conjugate of the slave image, which leads to an output with amplitude and
phase information. Amplitude data is the result of the multiplication of the
two initial scenes, while the phase band contains the phase difference be-
tween both scenes [53]. Another outcome of processing interferograms is
the coherence which is an indicator for the level of similarity between two
images ranging from 0 to 1. If the coherence is high there is little change be-
tween the two images, if there was a lot of change, e.g. during vegetation
growth, the coherence should be small.
There are five main influences on the coherence or decorrelation in general
[54]: (1) SNR of the satellite system, (2) processing of the raw data to SLC
data. (3) coregistration errors, (4) the across-track distance and (5) changing
surface conditions. The signal-to-noise ratio is usually high for dry snow cov-
ering ground ice, thus the effect of noise should be neglectable [27]. Decor-
relation due to processing of the raw data should be minimized during the
processing of the data by the IPFs [26]. The coregistration is really good since
Enhanced Spectral Diversity (ESD, [44]) got used to improve the results. The
across-track distance errors and the temporal change in the surface both have
influences on the coherence [26, 54, 55], but the decorrelation due to the per-
pendicular baselines should be small for Sentinel-1 [26]. Thus a changing
coherence should represent a temporal change in the data used here.
Because of the different dielectric properties of ice and water [8] and thus
their different responses to incoming waves I decided to calculate interfer-
ograms for some lakes and scenes to see if there is a usable change in the
results when the lakes froze. Not only should the interferograms show dif-
ferences, but also the coherence should change during the process. Since the
GEE is not yet able to compute complex data the processing of the interfero-
grams was mainly done in SNAP and using the InSAR Scientific Computa-
tional Environment (ISCE) for further investigation.
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SNAP

The processing was done according to a tutorial published by the ESA (see
figure 2.5)[53].
It is necessary that the images are taken in the same orbit since phase differ-
ences will not be indicating changes in topography when different orbits are
used.

Coregistering the Data
The first step is coregistering the data to make sure that the scenes overlap on
a sub-pixel size level. It consists of different operators: Read, TOPSAR-Split,
Apply-Orbit-File, Back-Geocoding, Write.
The two Read-Operators are reading the images and define a master and
a slave image. TOPSAR-Split is splitting the scenes in selected subswath,
bursts and polarisation(s). Polarisations, bursts and subswath have to be the
same for both images.
The Apply-Orbit-File-Operator is doing what is already described in the GRD
preprocessing. Back-Geocoding is performing an interpolation of the slave
image to fit to the master using the adjusted orbits and the DEM [44]. After
the coregistration is done, the workflow shown in figure 2.5 can be used.

FIGURE 2.5: Standard workflow for processing SLC data in
SNAP

Interferogram Formation and Coherence Estimation
This operator is calculating the interferogram. The user can choose to sub-
tract the flat-earth phase (reference) which would be done by calculating a
2D-polynomial. If the orbit and metadata is known the reference is calcu-
lated using the influence of the known topography on the phase information
[44]. In the dialogue the user can check a box “Include coherence estimation”.
This will produce an additional output band containing the coherence. If the
user chooses to subtract the flat-earth phase before it will be done using the
same polynomial as before.

TOPS Deburst and TOPS Merge
Sentinel-1 scenes consist of different bursts within the different swaths. The
different bursts are separated in the initial scene. The TOPS-Deburst oper-
ator is combining the different bursts in range direction and resulting in a
complete image, without the black stripes between each swath. The differ-
ent swaths are merged together to one full image for the whole scene by the
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TOPS-Merge operator which is also using the range overlap between the dif-
ferent swaths [44, 53].

Topographic Phase Removal
To remove the influence of topography on the phase data stored in the bands
it should be removed using the topographic phase removal operator. This op-
erator will simulate an interferogram based on a chosen/auto-downloaded
interferogram and subtract it from the calculated one. This will result in a
flattened interferogram [56].

Phase Filtering
The last step in producing interferograms is filtering the results. The phase
information can be distorted by temporal or geometric decorrelation, volume
scattering or by processing errors. To decrease the influence of this noise on
the phase the signal-to-noise ratio should be increased by using the Gold-
stein Phase Filter [57]. This filter is mainly necessary if the phase should
be unwrapped later since it is decreasing the chance of having unwrapping
errors due to noisy regions.

Geocoding
As a last step the result should be geocoded using Range-Doppler-Terrain-
Correction (see GRD-Data) to make it usable on maps and ease further inter-
pretation of the results [56, 58].
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ISCE

The script to calculate the interferogram for TOPSAR-imagery is called
topsApp.py. This script has to be executed in the directory where the
topsinsar.xml (see Source Code 1) file is stored and – in my case – the image
because the path is not defined further.

1 <topsinsar>
2 <component name="topsinsar">
3 <component name="master">
4 <property name="output directory">master</property>
5 <property name="safe">S1B_IW_SLC__1SDV_20180310T165118_

20180310T165145_009972_01212E_0F81.SAFE</property>↪→

6 <property name="polarization">vh</property>
7 </component>
8 <component name="slave">
9 <property name="output directory">slave</property>

10 <property name="safe">S1A_IW_SLC__1SDV_20180304T165159_
20180304T165226_020868_023CAC_C462.SAFE</property>↪→

11 <property name="polarization">vh</property>
12 </component>
13 <property name="swaths">[2]</property>
14 <property name="usegpu">True</property>
15 <property name="do Unwrap">True</property>
16 <property name="do ESD">True</property>
17 <property name="azimuthlooks">3</property>
18 <property name="rangelooks">7</property>
19 <property name="region of interest">[52.41 52.46 13.5

13.8]</property>↪→

20 </component>
21 </topsinsar>

SOURCE CODE 1: Example source-code for interferogram cal-
culation for the VH bands of swath 2 of two consecutive

Sentinel-1 scenes.

ISCE is running different steps throughout the process. Each step can be
done separately and the result of each step is saved in a PICKLE directory.
If the processing is stopped once, it can be restarted after the last completed
step [40]. The steps that are performed are shown and described below. Ev-
erything after the Topo-step and before the RangeCoreg-Step is performed
only for the overlapping areas of the bursts [59].

Startup The PICKLE directory is created and the .xml-file is checked
for typos or wrong property names.

Preprocess Orbits, bursts, antenna patterns and the IPF are extracted.
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ComputeBaseline Parallel and perpendicular baselines of the scenes are calcu-
lated using the orbit information.

verifyDEM If a DEM is set in the .xml-file the DEM will be checked, if no
DEM is set, it will download the DEM for the specified area
(if the earthdata settings are valid, there has to be a .netrc-
file in the working directory that contains the used infor-
mation for the download hub and the username/password
combination).

Topo The DEM is mapped into radar coordinates of the master
image.

SubsetOverlaps For the master geometry: top and bottom burst overlap are
computed.

CoarseOffset Offsets between bursts are extracted using the orbit files,
since they are not very accurate they are called coarse off-
sets.

CoarseResamp The slave image is resampled using the coarse offset infor-
mation.

OverlapIfg Interferograms of the overlap regions are calculated.

PrepESD Double difference interferograms are calculated for each pair
of bursts. Double difference interferograms capture displace-
ment in azimuth direction.

ESD The azimuth offset in pixel size is estimated using all pixels
that have a coherence bigger than 0.85 in both bursts.

RangeCoreg Range offsets are estimated by cross-correlating the ampli-
tude of the master and slave burst overlaps.

FineOffset Both the azimuth and range offsets are applied to the full
bursts.

FineResamp The fine offsets are used to resample the slave image to the
masters geometry.

BurstIfg Interferograms are calculated for each burst since master
and slave are in the same geometry now.

MergeBursts The different interferograms are merged together

Filter Additional filtering is performed based on a threshold de-
fined in the .xml-file or if the value is not set using a stan-
dard value

Unwrap Phase unwrapping is performed on the results.
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Unwrap2stage A two-stage unwrapper: the unwrapped interferograms get
adjusted using the connected component file that gets cre-
ated while unwrapping.

Geocode Geocoding the results in the property “geocode list” in the
.xml-file. If no list is specified, the results filt topophase.flat,
filt topophase.unw, los.rdr, phsig.cor, topophase.cor and
topophase.flat will be georeferenced.

The results were used to see if there is a significant change in the interfero-
grams or the coherence when ice forms on the lakes for the first time. The
results that were used are called: topophase.cor.geo, a indication of the topo-
graphic change and phsig.cor.geo, the coherence between the two scenes. The
.geo-ending is indicating that the result is georeferenced, which eases the us-
age in any GIS.

2.5.2 X-Polarised interferograms

Due to the different interaction of ice with co-polarized and cross-polarized
waves an approach introduced by Dr. Bodo Bookhagenwas to calculate X-
Polarised interferograms. Those are interferograms between the co- and the
cross-polarized backscatter of the same image. Those interferograms should
change when ice forms on the lake since the different wave types get scat-
tered differently.
Only the ISCE was used to calculate these interferograms since SNAP is not
able to co-register differently polarized waves. The setup is the same as
shown in Source Code 1, but the master and the slave images are the same.
Additionally, the polarisations of the two scenes should differ. ESD must
not be performed since there is no overlap error and it will return an error
otherwise.
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3 Results

3.1 GRD products

3.1.1 Time series

The code to produce the shown time series with the GEE are stored in Ap-
pendix A. Figures 3.1 to 3.5 show the different bands for "Nehmitzsee" in
winter 2017/2018.

FIGURE 3.1: Time series showing the lake-wide mean value for
the VV band during winter 2017/2018. The blue box is the
freezing period according to the IGB data (see Appendix C).
The lake was shifting from being ice-free to being completely

frozen between 30th January 2018 and 6th February 2018
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FIGURE 3.2: Time series showing the lake-wide mean value for
the VH band during winter 2017/2018. The blue box is the
freezing period according to the IGB data(see Appendix C). The
lake was shifting from being ice-free to being completely frozen

between 30th January 2018 and 6th February 2018

FIGURE 3.3: Time series showing the lake-wide mean value for
the ratio of the two bands during winter 2017/2018. The blue
box is the freezing period according to the IGB data(see Ap-
pendix C). The lake was shifting from being ice-free to being
completely frozen between 30th January 2018 and 6th February

2018
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FIGURE 3.4: Time series showing the lake-wide mean value for
the normalised difference index of the two bands during winter
2017/2018. The blue box is the freezing period according to the
IGB data (see Appendix C). The lake was shifting from being
ice-free to being completely frozen between 30th January 2018

and 6th February 2018

FIGURE 3.5: Time series showing the lake-wide mean value for
the product of the two bands during winter 2017/2018. The
blue box is the freezing period according to the IGB data (see
Appendix C). The lake was shifting from being ice-free to being
completely frozen between 30th January 2018 and 6th February

2018

The graphs show that there is no real use of the NDI values since they
change a lot during the whole time series and show no significant or reliable
behaviour during the freezing period.
The graph of the product seems to be better, but the peak before the freezing
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started and the non-existence of significant behaviour throughout the freez-
ing period lead to rejection of the product as an indicator of freezing.
The charts for the single bands and their ratio appear to be better suited and
were therefore investigated further. A problem with observing the changes
of VV or VH values over time is the difference in the incidence angle, since
the angle has a high influence on the backscatter. Higher angles tend to have
lower backscatter values for both VH and VV values [10].
Thus I decided to investigate mainly the ratio of the two bands under the
assumption of a comparable influence of the incidence angle on both VV and
VH backscatter [16]. Using the ratio could also lead to a decrease of the in-
fluence on values that is caused by changing snow conditions if both values
are influenced the same way.
Note that the data shown before is extracted of the GEE, the following figures
are produced using SNAP preprocessing on my local PC.
Since there was no big discrepancy between looking at small areas (30m x
30m, 50m x 50m) or the mean over whole lakes, we decided to be computing
time efficient and use the mean values of the whole lake polygon buffered
with -10 m to get rid of potential mixed pixels from lake shores.

FIGURE 3.6: Time series showing the lake-wide mean value for
the ratio during winter 2018/2019 for the Nehmitzsee. The blue
box is the freezing period according to the IGB data (see Ap-
pendix C). The lake froze between 4th January 2019 and 30th

January 2019
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FIGURE 3.7: Time series showing the lake-wide mean value for
the ratio during winter 2018/2019 for the "Großer Stechlinsee".
The blue box is the freezing period according to the IGB data
(see Appendix C). The lake was freezing between 29th January
2019 (1% surface ice) and 15th February 2019 (50 % surface ice)

FIGURE 3.8: Time series showing the lake-wide mean value for
the ratio during winter 2019/2020 for "Lake Kyyjärvi". The blue
box is the freezing period according to satellite data (Sentinel-
2), the lake was freezing between 10th October 2019 and 30th

October 2019

Looking at figures 3.6 to 3.8 a change is occurring during the freezing
period. The three figures show a significant peak during the freezing period.
"Lake Kyyjärvi" is not showing behaviour like this before the freezing period.
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3.1.2 Tresholds

Defining thresholds for the different bands worked fine for single images but
it was not transferable to other dates or other lakes on the same date. To see
the used code see Appendix A.

FIGURE 3.9: Images taken for validation of the results. (A)
False color composite (B8-B4-B3) of “Müritz” on 16th February
2018 showing ice in the northern part (“Binnenmüritz”) and in
the smaller bays in the south. (B) False colour composite (B8-
B4-B3) of “Müritz” on 3rd March 2018. The whole lake is cov-
ered with ice, the "Binnenmüritz" is covered by snow. (sources:

https://sentinel-hub.com)

The thresholds were picked by hand and adjusted using the results to
increase or decrease the values. In the end the best results were produced
using the following thresholds:

Band Threshold Ice below or above threshold

VV 0.01 below

VH 0.0018 above

Ratio 6.6 below

TABLE 3.1: Threshold values for different bands. Note the val-
ues for VV and VH are not recalculated in dB but are given in
floating point numbers. The numbers result in a good fit for the

first images.
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FIGURE 3.10: The results using the thresholds in table 3.1 on
16th February 2018 at “Müritz”. Black areas represent ice, white
areas represent water.(A) Ratio-threshold. (B) VH-threshold.
(C) VV-threshold. All images are screenshots taken of the GEE.

Comparing the different results shown in figure 3.10 to the validation image
(figure 3.9, (A)) shows that both the ratio-threshold and the VH-threshold
show promising results. The completely frozen state of the "Binnenmüritz"
is reflected in the results, as well as some minor frozen areas in the smaller
bays at the south of the lake. The VV-threshold is working quite well, even
though some parts are misclassified as ice but are water in reality.

FIGURE 3.11: Results using the thresholds in table 3.1 for 2018-
03-03 at the “Müritz”. Black areas represent ice, white areas
represent water.(A) Ratio threshold. (B) VH threshold. (C) VV

threshold. All images are screenshots taken of the GEE.

The results for the 3rd March 2018 are showing that the threshold for the
VH values that seemed to fit quite good for the 16th February (figure 3.11) is
completely off. The whole lake is characterized as not frozen even though it is
nearly completely frozen (figure 3.9, (B)). Figure 3.11 (A) is showing that the
ratio-threshold is not that good as well, since there are a lot of areas classified
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as not frozen. The best representation at this stage of the process is coming
of the threshold for the VV-values. Not only visual interpretation was per-
formed, I also checked how good each threshold is representing the classes
ice and water for both dates. The data is supporting the visual interpretation.

2018-02-16

Reality Classified as Ratio-Threshold VH-Threshold VV-Threshold

Ice
Ice 13.00 % 13.35 % 9.07 %

Water 3.82 % 4.47 % 7.75 %

Water
Ice 18.26 % 7.79 % 19.09 %

Water 64.92 % 75.39 % 64.09 %

Correct Classification 77.92 % 88.74 % 73.16 %

TABLE 3.2: Percentage share of the classification using the dif-
ferent thresholds in table 3.1 for 2018-02-16.

2018-03-03

Reality Classified as Ratio-Threshold VH-Threshold VV-Threshold

Ice
Ice 69.52 % 8.71 % 84.77 %

Water 30.48 % 91.29 % 15.23 %

TABLE 3.3: Percentage share of the classification using the dif-
ferent thresholds in table 3.1 for 2018-03-03. The whole lake is
covered by ice, thus the correctly classified values are the same

as the ice-values.

To see if the defined thresholds are usable on the same date but for an-
other lake they were used to classify the “Barniner See” in Mecklenburg-
Vorpommern. Figure 3.12 is showing a satellite data image that was used
for validation of the results. The lake is almost completely frozen, besides a
small area in the north-eastern part.
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FIGURE 3.12: Validation false color composite (B8-B3-
B3) of “Barniner See” on 16th February 2018. (source:

https://sentinel-hub.com)

FIGURE 3.13: The results using the thresholds in table 3.1 for
2018-02-16 at “Barniner See”. Black areas represent ice, white
areas represent water. (A) Ratio-threshold. (B) VH-threshold.

(C) VV-threshold. The images are screenshots from the GEE.

Comparing figure 3.12 to figure 3.13 shows there is no real use of the
thresholds working for the “Müritz” at the "Barniner See" on the same day.
The results show that they have problems to represent the surface state of the
lake, with the VV-Values being the best of three bad options, based on visual
interpretation.
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2018-02-16

Reality Classified as Ratio-Threshold VH-Threshold VV-Threshold

Ice
Ice 60.5 % 62.74% 33.46 %

Water 23.45 % 21.21 % 50.49 %

Water
Ice 9.61 % 9.19 % 7.79 %

Water 6.38 % 6.86 % 8.27 %

Correct Classification 66.88 % 69.6 % 41.73 %

TABLE 3.4: Percentage share of the threshold values compared
to Sentinel-2 derived real data for "Barniner See".

Table 3.4 is supporting the stated fact that the results are not usable since
there are too many misclassified pixels.
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3.1.3 Unsupervised classification

The unsupervised classification led to good results for big lakes if the scale
was set to 30 m/px. The code for the creation of the results can be found in
Appendix A.

FIGURE 3.14: “Müritz” on 2018-02-16. (A) False color compos-
ite (B8-B4-B3). (source: https://sentinel-hub.com)) (B) Result
of the unsupervised classification with 3 classes and the scale
set to 30m/px. The red colored pixels represent ice, the two
other classes represent water. The small yellow dot is a hint
where even small ice areas get recognised quite well. (Screen-

shot of GEE)

Figure 3.14 and table 3.5 show that the unsupervised classification is work-
ing to at least some degree. In this case the red class indicates ice, the other
two classes indicate water. This is not really representing the three classes of
water, wavy water and ice, since the pattern does not look like it is caused by
waves. But the detection of ice is working. Especially on the borders of the
lake, e.g. in the north-eastern part (yellow dot), even small areas of ice are
detected. But there are also some areas that got misclassified as ice like the
small red part in the middle of the green class in the north west of the lake.
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FIGURE 3.15: “Müritz” on 2018-03-03. (A) False color compos-
ite (B8-B4-B3) of the Lake. (source: https://sentinel-hub.com)
(B) Result of the unsupervised classification scale is set to 30.
The blue colored pixels are representing ice. (Screenshot of

GEE)

Figure 3.15 shows another example for ice on the lake and the result of
a classification. Once again it looks like the result is quite good since the
whole lake is covered in ice and nearly the whole area was classified as one
class. Due to the random seeding of the class-centroids in the beginning the
ice is now in another class as shown in figure 3.14, but this could have been
solved by comparing the mean values of the classes if the results were used
in further analysis. The percentual share of correct and misclassified pixels in
both classes were calculated. The two classes that are not ice were combined
as one water class as suggested [25].
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Reality Classified as 2018-02-16 2018-03-03

Ice
Ice 12.39 % 96.70 %

Water 7.04 % 3.30 %

Water
Ice 8.24 % 0 %

Water 72.33 % 0 %

Correct Classification 84.72 % 96.70 %

TABLE 3.5: Percentual share of water and ice classified pixels of
the total amount of pixels. The overall fit for "Müritz" is quite
good on both dates. Note that the lake was completely frozen

on 2018-03-03, thus no pixels are water in reality.

Since it worked quite well on big “Müritz”, the classification was also used
on the smaller “Barniner See”. Unfortunately figure 3.16 shows that for small
lakes – regardless of the scale set to 10 m/px or 30 m/px - the classification
is not working at all.

FIGURE 3.16: “Barniner See” on 2018-02-16. (A) A false
colour image (B8,B4,B3) of the lake. (source: https://sentinel-
hub.com) (B) The result of the unsupervised classification with
the scale set to 30m/px.(C) The result of the unsupervised clas-
sification with the scale set to 10m/px. The results are screen-

shots of GEE results.

Due to the bad results it is not even possible to assign different classes to
the different colors shown in the figure. If one would assign the class ice to
the biggest class (green for (B) and blue for (C) on figure 3.16) the goodness
of fit can be calculated(see 3.6).
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2018-02-16

Reality Classified as Scale 10 m/px Scale 30 m/px

Ice
Ice 79.80 % 77.74 %

Water 5.00 % 7.06 %

Water
Ice 14.36 % 13.42 %

Water 1.70 % 1.78 %

Correct Classification 81.5 % 79.62 %

TABLE 3.6: Percentual share of water and ice classified pixels of
the total amount of pixels for the "Barniner See" on 16th Febru-

ary 2018.

Even though table 3.6 indicates good results for "Barniner See" due to a rel-
atively high accuracy in total correctly classified pixels, this is mostly due to
the low amount of water pixels in the lake at this day. Nearly 0% of the wa-
ter pixels get classified as water, thus this method should not be taken into
account to detect water on small lakes.
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The number of clusters was switched between 3 and 6, since doubling the
number of clusters and recombining them afterwards can be used to increase
the accuracy of the result. Unfortunately this did not change anything in the
results or improve the classification, it even lead to worse results for the big
lakes.

FIGURE 3.17: Examples for unsupervised classification using
6 classes on “Barniner See” on 2018-02-16. (A) Scale set to
10m/px. (B) Scale set to 30m/px. The results are screenshots

of GEE results.

Figure 3.17 shows that the result is not improving if six classes were used
on a small lake.
Since the results for small lakes – which are common in Scandinavia – were
that bad the approach was neglected even though it might be useful if one
was interested in big lakes.
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3.2 SLC products

Both satellite data (figure 3.18) and the data of the IGB (see Appendix C)
show that "Nehmitzsee" was frozen 6th February 2018 (100% ice cover) and
23rd March 2018 (80% ice cover). "Großer Stechlinsee" only froze up to 45%
on 8 March 2018. The ice on "Großer Stechlinsee" was mainly present on the
two sidearms in the south-western and the western part.

FIGURE 3.18: False color composites (B8-B4-B3) of
"Nehmitzsee" and "Großer Stechlinsee" in Brandenburg
showing different ice extents on different dates. (A) A cloudy
scene on 6th February 2018. (B) A scene taken on 3rd March

2018. (source: https://sentinel-hub.com)
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3.2.1 Topophase

FIGURE 3.19: A time series showing the topophase.cor.geo band
2 results for one orbit of Sentinel-1 data starting on 1st February
2018 up until 21st March 2018 for "Nehmitzsee" and "Großer

Stechlinsee".

During the first time step there is no significant signal thus no significant
change visible in the topophase band 2 (Figure 3.19), even though "Nehmitzsee"
is freezing up from 10% ice cover up to a complete ice cover. A first increase
in "Nehmitzsee" and small parts of "Großer Stechlinsee" (south-western part)
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between 2018-02-07 and 2018-02-13 are visible, which is increasing even more
in the next time-step. The change seems to be more accurate for "Großer
Stechlinsee" up to the time-step 2018-02-25 to 2018-03-03, when both lakes
show values that are comparable to the initial time-step, even though the ice-
extent of "Großer Stechlinsee" is increasing again. The increase at the end of
the time series is not explainable by the ice data, since "Nehmitzsee" is not
changing its ice-cover up to the end of March.
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3.2.2 Coherence

FIGURE 3.20: A time series showing the phsig.cor.geo for one
orbit of Sentinel-1 data starting on 1st February 2018 up until

21st March 2018.

The coherence time series (figure 3.20) shows – like the topophase – an increase
up until the 3rd time-step between 2018-02-13 and 2018-02-19. But compar-
ing this increase to the satellite data (figure 3.18) shows that parts of Großer
Stechlinsee are not frozen at all, despite showing high coherence values.
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3.2.3 X-Polarised interferograms and coherence

X-Polarised interferograms were calculated for "Müggelsee", “Großer Stech-
linsee”/”Nehmitzsee” and “Västra Laxsjön” and “Östra Laxsjön” in Sweden.
The results that were used were the phsig.cor.geo for the coherence between
the VV and VH bands in the image and the result called topophase.cor.geo as
a representation for the different responses of the waves to the surface state.
The lakes in Sweden were not frozen on 16th November 2018, but a satellite
image recorded on 26th November shows signs of ice on the surface of the
lakes (figure 3.21).

FIGURE 3.21: The freezing time of “Västra Laxsjön” (left) and
“Östra Laxsjön” (right) in Sweden.(A) False-color composite
(B8-B4-B3) on 16th November 2018 showing no signs of ice.
(B)False-color composite (B8-B4-B3) on 26th November 2018
showing a frozen surface. Ice features like small cracks are vis-

ible in the yellow circles. (source: https://sentinel-hub.com)

Topophase

The results for “Müggelsee” (see figure 3.22) show that the topophase band 2
has higher values on 4th March when the whole lake was covered by clear ice.
The values decrease when the ice is getting thinner (2018-03-10 and 2018-03-
22) and shows a little response to the snow on top of the ice on 22nd March.
Unfortunately on 2018-02-26 there are equally high values present as on 2018-
03-10, even though there is no ice on the lake, only on the northern shoreline.
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FIGURE 3.22: A time series showing the topophase.cor.geo for one
orbit of Sentinel-1 data starting on 1st February 2018 up until

21st March 2018 for "Müggelsee".

Both "Nehmitzsee" and "Großer Stechlinsee" were ice-free at the begin-
ning of the short time series shown in figure 3.23. "Nehmitzsee" was com-
pletely frozen starting at the 6th February up until the end of March, whereas
"Großer Stechlinsee" did not have more than 45% ice cover in this winter, the
maximum amount of ice in this time series is 38 – 42% between 2018-02-22
and 2018-03-01.
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FIGURE 3.23: A time series showing the topophase.cor.geo band 2
of the X-Polarized interferograms for the "Nehmitzsee" and the

"Großer Stechlinsee".

There are some well-represented features like the frozen part of "Großer
Stechlinsee" on 2018-02-19, but the snow cover seen in the satellite images
(figure 3.18) is not represented. There is no indication for ice or snow on the
lake. Maybe this is caused by snow accumulating on the ice. This might be
an even bigger problem for Scandinavia, where snow is occurring quite often
when it is cold enough for lakes to freeze.
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FIGURE 3.24: A time series showing the topophase.cor.geo band 2
of the X-Polarized interferograms for "Västra Laxsjön"(left lake)
and "Östra Laxsjön" (right lake). Data is not taken from one
single orbit. On 2018-11-19 both data from Sentinel-1 A and
Sentinel-1 B are available (upper right is Sentinel-1 A data, mid-
dle left is Sentinel-1 B data. Even on the same date there are

differences in the values.

Figure 3.24 shows a time series for the topophase band 2 for two lakes
in Sweden. The time series indicates that something happened between
2018-11-12 and 2018-11-18/2018-11-19, maybe a freezing process but unfor-
tunately the 24th looks quite low in terms of band-value for the topophase
and the re-increase of the values after the 24th are not explainable using the
given data. There is no indication for a thawing and refreezing process on
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satellite data. The different values for the same date are indicating that a
change happened throughout the approximately 11 hours between the ac-
quisitions. This might be caused by early morning freezing of the lake which
is not present in the afternoon [6]
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Coherence

"Müggelsee" shows no significant change in the coherence during the time
series (Figure 3.25). Only the north-western part shows high values of coher-
ence which would represent similarity in the reflection of VV and VH waves.
But since there is no change throughout the month of investigation there is
no hint that this could be used to determine ice-cover.

FIGURE 3.25: A time series showing the phsig.cor.geo for one
orbit of Sentinel-1 data of the "Müggelsee". The coherence is not
changing a lot even though the ice cover of the lake is increasing
and decreasing again in this time frame according to the IGB

data (Appendix C)
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The time series for the coherence on "Nehmitzsee" and "Großer Stechlin-
see" (figure 3.26) shows – like the time series for the "Müggelsee" – no signif-
icant change.

FIGURE 3.26: A time series showing the phsig.cor.geo for one
orbit of Sentinel-1 data on "Nehmitzsee" and "Großer Stechlin-
see". The coherence is not changing significantly during the
time covered by the time series even though there is significant

change in ice cover (see Appendix C).

The coherence value is not significantly changing on the lakes in Sweden
over the time series (figure 3.27). There is no indication that this could help
to recognize ice.
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FIGURE 3.27: A time series showing the phsig.cor.geo for one
orbit of Sentinel-1 data on "Västra Laxsjön"(left lake) and "Östra
Laxsjön" (right lake). No change is present in the time series but

the lakes are freezing, see figure 3.21.
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4 Conclusion

Looking at all the results in the previous chapter shows a big problem: there
is no approach that is working perfectly. Single approaches seem to work for
different lakes or different times, but they are not applicable to all images or
lead to promising results for all lakes.
The best results were accomplished by using a time series of the ratio value
for a lake-wide mean. Thus I decided to use this method and try to specify
further usage by comparing the values to a long-term mean (LTM).

FIGURE 4.1: Resulting time series of the ratio VV/VH for
"Nehmitzsee" in winter 2018/2019. The red dots are showing
the LTM, the vertical red lines are showing ±40% deviations of
the LTM. The blue box is showing the freezing period as indi-

cated by the IGB data.

Figure 4.1 shows a time series of the lake wide mean of the ratio VV
VH of

"Nehmitzsee" in Brandenburg in winter 2018/2019. It is visible that the lake
wide mean shows a single high peak in the freezing period of the lake com-
pared to long term mean ±40% of the lake wide mean. Unfortunately there
are peaks before the freezing period, thus the lake would be classified as
frozen to early. There is no data before 4th February 2019, thus I can not be
100% sure that the lake was not frozen at all before.
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FIGURE 4.2: Time series of the ratio VV/VH for "Lake
Kyyjärvi". The red dots are showing the LTM, the vertical red
lines are showing ±40% deviations of the LTM. The blue box is

showing the freezing periods.

"Lake Kyyjärvi" is showing a different behaviour. The only time the ratio-
value is far above the long-term mean is inside the freezing period which
was derived from satellite data.
The data for "Lake Kyyjärvi" is supporting the idea that using a comparison
of the data with the LTM is usable. It is one of the fastest and most accurate
approaches, thus I decided to use it as an indicator, even though I know that
it is not perfect.
The result of my work is the following: As soon as a lake-wide mean value
is higher than the LTM+40%, the lake is considered being frozen.
I decided to assign one of two states to the lakes. If they are not frozen the
state is 0, once they are freezing according to the method the state is changed
to 1.

State Meaning

0 Not Frozen

1 Frozen

TABLE 4.1: The different states and their meanings assigned
due to the used algorithm.
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5 Automation

The results have shown that the best way to detect the ice in this work was a
simple time-series of the ratio VV

VH .
Since the ratio was used, it was possible to use the GRD data and thus save a
lot of disk space and decrease computational time in comparison to the usage
of SLC data.
There are four steps that have to be done:

1. Download all GRD scenes of the area of interest with a given time span
(I think the best way is to do this daily, so in the following text I will
assume one is doing this daily).

2. Process the downloaded data using the SNAP Graph processing tool.

3. Extract the ratio values for all lakes and check if the values have in-
creased a lot in comparison to the mean over the whole series.

4. Map and export the data automatically.

I created one batch-file for the whole process which contains all of the steps
and uses different python environments, different programs and runs on its
own once it is started.
The different scripts named here can be found in Appendix B

5.1 Downloading

The data is downloaded using sentinelsat [60] which can be used to search
and download Copernicus Sentinel satellite images. It is possible to install
sentinelsat through pip and it is necessary to have an account on the Coper-
nicus web service to download the data. Sentinelsat is a command-line tool:

1 sentinelsat -u <user> -p <password> -g <search_polygon.geojson> -s
20150101 -e 20151231 -d --producttype GRD --url
"https://scihub.copernicus.eu/dhus"

↪→

↪→

The parts user, password and url can be set as environment variables in
Windows which is even shortening the command. The following variables
have to be set: DHUS_USER = <user>, DHUS_PASSWORD = <password> and
DHUS_URL=<https://scihub.copernicus.eu/dhus> (all without the < >).
The -g for geometry is defining the geometry of the search, so it is the outline
of my area of interest around Scandinavia that is shown in figure 1.1.
-s and -e are defining the start and the end dates of the search, if they are not
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defined only data of the last day will be investigated. -d is defining that the
data should be downloaded and saved on the hard drive.
–producttype is defining the product type that should be downloaded There
are plenty of other settings that can be used to specify the search, like queries
to define polarisations. Those can be found in the documentation [60].
In the end the command used in this work looks like this (with set environ-
ment variables, for daily use):

1 sentinelsat -g outline.geojson -d --producttype GRD

The data will be stored as .zip files in the current directory

5.2 Preprocessing with SNAP

To preprocess the data the graph processing tool (GPT) of SNAP was used. It
allows you to execute graphs on data outside of SNAP using the command
line [44]. To process all of the data in one step I created a for-loop inside of
my batch-file.

1 for %%X in (*.zip) do (gpt GRD_Preprocess.xml -PFilename="%%X" -t
"G:\MT\PreprocessedData\%%~nX.dim")↪→

This line of code is iterating through all files that end on .zip in the direc-
tory, i.e. all downloaded .zip-files of step 1, and processing them using the
GRD Preprocess.xml that was described in Section 2.4. Since no precise Orbit-
files will be available on the day after the images were taken, I removed that
part of the graph to decrease computation time.
The -PFilename=”%%X” is setting the input variable to the currently iterated
file and -t (-target) is defining where the preprocessed data should be stored
with the same name as the input file.
(NOTE: If this should be run outside of a batch-file in a command line inter-
face only use a single % sign in front of all the variables.)
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5.3 Extracting values and updating tables

To do this step it is necessary to have the following setup:

• an executable python 2 distribution called python27.exe with the fol-
lowing packages and their dependencies installed: arcpy, datetime,
numpy (comes with ArcMap 10.1, need to rename python.exe to
python27.exe to not mix up with the python3 distribution)

• an executable python 3 distribution called python.exe with the follow-
ing package and their dependencies installed: numpy, datetime, glob,
pandas.

• A lakes.shp file containing all lakes inside of the area of interest (minus
10m buffer on each side for mix pixels)

• Three files named: lakes.csv, LTM.csv and State.csv. The lakes.csv con-
tains the FIDs of the lakes, and the mean values of the different dates.
The LTM.csv includes the FIDs and - starting after 10 mean values are
added to the lakes.csv - the mean value of the time series up to this date.
The State.csv consists of two columns: the FIDs of the lakes and the
State.

(If you have a python environment with all of those packages it should be possible to use only one of them, I was

not able to install arcpy on my python 3 environment and could not install any packages in the ArcMap-delivered

python 2 environment.)

The third step of the processing is happening in two steps :

1 for /R G:\MT\PreprocessedData %%R in (*.img) do python27
zonalstatistics.py %%R lakes.shp↪→

2 python TimeSeries.py

The first line of this part of the code is iterating recursively through all the
preprocessed data and looking for .img files which is the format the data is
stored inside of SNAPs BEAM-DIMAP-format.
For each file it is running python27 zonalstatistics.py which is extracting the
count of pixels and the sum of the values inside each polygon inside the
lakes.shp. For each scene the data is stored as a text file with the correspond-
ing FIDs for the lakes. No scene will cover the whole area, so some FIDs will
not be in the text files but this is no problem in further processing.
The second line is using all the text files created in the first step and cal-
culate the mean for every FID/lake if there are several measurements for a
day (sometimes both Sentinel-1A and Sentinel-1B are covering lakes at one
day). The mean is calculated by adding up all the sums and the counts re-
spectively, and dividing the sum by the count afterwards. This is taking into
account that not all lakes are fully covered by a scene sometimes. The mean
values will be added to the Lakes.csv according to the FID, the lakes that were
not covered that day will be assigned a NaN for that day.
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The code is further importing the State.csv and the LTM.csv, calculating a new
LTM and adding it to the table, when more then 10 lake-wide means are cal-
culated. Once the lake-wide mean value for a day is higher than 1.4 times the
long-term mean, the state of the lake will be changed to 1.

5.4 Mapping and exporting

It is necessary to have a Mapping.mxd map project that contains the lakes.shp
with set symbology for different states. The code line for the last part is:

1 python27 ReintroduceArcpy.py

The code is importing both the lakes.shp and the State.csv files. The state
column of the shapefile is getting deleted, and the updated column of the
State.csv is merged to the shapefile based on the FID. Since the symbology is
set already it will get updated by new values in the state-field of the shapefile.
A PDF-file will be saved with a map including a basemap and the lakes with
their corresponding states. After this the satellite data and the preprocessed
data will get removed.

FIGURE 5.1: Visual overview of the different steps happening
in the automated process.
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5.5 Regarding big lakes

After consultation with Dr. Annett Frick, we decided to cut the polygons of
the big lakes into smaller pieces, since the big lakes will not freeze as one
body. This was done manually by me. Obviously this will lead to mistakes
in classification and might even lead to many patches in different states next
to each other.
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6 Validation

The described method that worked best was validated at different lakes in
winter 2018/2019 to assess the viability of the idea. Overall the fit seems to
be quite good in the tested scenarios.

6.1 Germany

6.1.1 Nehmitzsee

Freezing data

Data of the IGB shows that the "Nehmitzsee" was freezing between 4th Febru-
ary 2019 and 24th February 2019, starting at 10% up to a complete ice cover.
Unfortunately there is no satellite data to narrow the time span. There is no
data before the 4th February 2019 thus I can not be 100% sure that the lake
was not frozen at all before.

Time Series

The time series for "Nehmitzsee" for winter 2018/2019 is part of the conclu-
sion (Figure 4.1). It shows that the time series for "Nehmitzsee" has 3 peaks
that are above 1.4 times the LTM. One of them is inside the freezing period.
The state of the lake would be 1, according to table 4.1, in late December,
approximately 2 weeks before the first data point suggests that the lake is
partly frozen. The peak in the middle of the freezing period could represent
the freeze-up of the whole lake.

6.1.2 Großer Stechlinsee

Freezing data

"Großer Stechlinsee" was not completely frozen, starting at 1% on 29th Jan-
uary 2019 and ending the main freezing period at 50% on 15th February.
Again, there is no satellite data to get a more precise time.
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Time Series

FIGURE 6.1: Validation of the described process on the time
series of the ratio VV/VH on "Großer Stechlinsee" in winter
2018/2019. The red dots are showing the LTM, the vertical red
lines are showing ±40% deviations of the LTM. The blue box is

showing the freezing period.

The time series for "Großer Stechlinsee" shows a similar pattern as the time
series for "Nehmitzsee": There is a peak above the threshold value during the
freezing period, but unfortunately another peak before the freezing period.
Additionally, the lake is not freezing completely, thus the result might be
biased since a big part of the lake is not freezing throughout the winter.
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6.2 Finland

6.2.1 Lake Kyyjärvi

Freezing data

Sentinel-2 data of 23rd October 2019 is not showing signs of ice on the lake.
On 30th October the lake is frozen, small cracks are showing. This is con-
sistent with temperature data: During the described period the temperature
changes from up to 10° C to negative temperature values.

Time Series

The time series for "Lake Kyyjärvi" is already shown in figure 4.2. Through-
out the freezing period a single, big peak above the LTM is visible. As stated
in the conclusion the method is working perfectly fine for this lake.

6.2.2 Peuralampi

Freezing data

Sentinel-2 data of the 21st October 2019 is not showing signs of ice on the lake.
On 5th November the lake is frozen, the surface is definitely covered by ice.
Since the lake is close to "Lake Kyyjärvi" the temperature data is supporting
this period again.

Time Series

FIGURE 6.2: Validation of the described process on the time se-
ries of the ratio VV/VH on "Peuralampi" in winter 2019/2020.
The red dots are showing the LTM, the vertical red lines are
showing ±40% deviations from the LTM mean. The blue box is

showing the freezing periods.
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"Peuralampi" is showing the same pattern as "Lake Kyyjärvi": A single high
value in the freezing period. This is supporting the used method even for a
small lake in Finland.
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6.3 Norway

The six lakes that are investigated here are pretty close to each other, see
figure 2.2. Thus the temperature data for all lakes is the same and will not be
mentioned in the different sections for every single lake. In late October 2019
the temperature decreases and varies around 0° C throughout November.
The freezing period was determined using Sentinel-2 data on the Sentinel-
hub Playground [41].

6.3.1 Birtevatn

Freezing data

"Birtevatn" is not frozen at all on 2019-11-05. On 17th November small bays
were covered by ice. The whole lake surface was frozen on 30th November
2019.

Time Series

FIGURE 6.3: Validation of the described process on the time
series of the ratio VV/VH on "Birtevatn" in winter 2019/2020.
The red dots are showing the LTM, the vertical red lines are
showing ±40% deviations from the LTM mean. The blue box is

showing the freezing periods.

The time series for "Birtevatn" shows - like the lakes in Finland - one high
peak in the freezing period. The end of the time series shows an increase
again, but there is no sign of a possible miss-classification as ice before the
freezing period starts.
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6.3.2 Grøssæ

Freezing data

"Grøssæ" shows the same pattern as "Birtevatn". Not frozen on 5th Novem-
ber, partly frozen on 17th November and completely frozen on 30th Novem-
ber 2019.

Time Series

FIGURE 6.4: Validation of the described process on the time
series of the ratio VV/VH on "Grøssæ" in winter 2019/2020.
The red dots are showing the LTM, the vertical red lines are
showing ±40% deviations from the LTM mean. The blue box is

showing the freezing periods.

"Grøssæ" shows a good resulting time series for the used method. A sin-
gle peak consisting of two consecutive values that are far above the long-term
mean. There is no sign of miss-classification before the freezing period again.
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6.3.3 Mjåvatn

Freezing data

"Mjåvatn" has the same freezing period characteristics as "Birtevatn" and
"Grøssæ".

Time Series

FIGURE 6.5: Validation of the described process on the time se-
ries of the ratio VV/VH on the "Mjåvatn" in winter 2019/2020.
The red dots are showing the LTM, the vertical red lines are
showing ±40% deviations from the LTM mean. The blue box is

showing the freezing periods.

The resulting time series for "Mjåvatn" is not as perfect as the previously
shown time series for the Norvegian lakes. But the lake would have been
classified as frozen on the peak that is in the freezing period and little above
the 40% threshold above the LTM.
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6.3.4 Topsæ

Freezing data

"Topsæ" is not frozen on the 5th of November, frozen up to ca. 50% (the north-
ern part of the lake) on the 10th of November 2019 and completely frozen on
the 30th November 2019.

Time Series

FIGURE 6.6: Validation of the described process on the time
series of the ratio VV/VH on the "Topsæ" in winter 2019/2020.
The red dots are showing the LTM, the vertical red lines are
showing ±40% deviations from the LTM mean. The blue box is

showing the freezing periods.

"Topsæ" is showing a good recognition of the complete freezing in the
end of November. The higher values between 15th and 31st November could
be due to the partial freezing early in November. There is no possible miss-
classification to early in the year.
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6.3.5 Vånarosen and Kjetebuvatn

Freezing data

The small lakes are not frozen at all before 1st November 2019 and froze com-
pletely up to 10th November 2019.

Time Series

FIGURE 6.7: Validation of the described process on the time
series of the ratio VV/VH on the "Vånarosen" in winter
2019/2020. The red dots are showing the LTM, the vertical red
lines are showing ±40% deviations from the LTM mean. The

blue box is showing the freezing periods.
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FIGURE 6.8: Validation of the described process on the time
series of the ratio VV/VH on the "Kjetebuvatn" in winter
2019/2020. The red dots are showing the LTM, the vertical red
lines are showing ±40% deviations from the LTM mean. The

blue box is showing the freezing periods.

Even though both lakes show signs of freezing earlier than expected by
looking at the time series, they are not classified as frozen before the 22nd

November 2019. This could be due to a relatively fast freezing, that is not
observed by Sentinel-1. Both lakes are very small, this should be taken into
account since other very small lakes could be missclassified as well.
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7 Discussion

Comparing my work to the state of the art is not that easy, because most
people [4, 9, 25] are more interested in the thawing period or thawing onset
instead of the freeze up.
The influences described in the introduction showed throughout this work:
the incidence angle, the different types of ice, the not really represented thin
ice, the bad recognition of thin ice on Sentinel-2 data (figure 2.1) and the
different time spans of freezing made it really hard to get a working result.
Different time series showed that no real usage was possible besides the ratio
of VV and VH. This is mainly because the effects of incidence angle should
be similar on both waves which is a limiting factor for the other values [10,
15, 16]. The absolute value of the ratio is still not usable since it is varying a
lot over the freezing period [2, 24]. A decrease of the ratio after the freeze-
up of the lakes due to snow coverage as seen in some of the time series was
also visible in previous work. This is due to an increase of volume scattering
leading to an increase of the VH values compared to the surface scattering
that is mostly influencing VV values [16].

At the time of ice formation the total backscatter should be low, since the
radar pulse is reflected away from the antenna [5, 61], but this does not af-
fect the ratio that much since both waves are reflected away. Floating ice
or strong winds lead to higher backscatter values since the rough surface
is scattering the incoming wave back to the antenna [5, 11]. Floating ice
was detected using co-polarized data before, but is not as good as cross-
polarised data when the lake surface is disturbed by wind [11]. Once thin
ice is building the backscatter is not changing that much [23], but as soon as
it grows, the backscatter increases due to the integration of air bubbles in-
side the ice [6, 18, 21, 23]. Deep lakes or deep parts of lakes seem to change
slower since less air bubbles are produced, mostly because of less bioactivity
[6, 23]. While ice is growing the backscatter is increasing until it either sat-
urates the sensor (probably more relevant for older SAR systems) [6], or the
ice thickens enough to decrease the influence of new air bubbles added to the
pack [6, 18, 23]. This would be useful if one was interested in ice thickness
measurements after the initial freeze-up of the lake. For this work only the
initial change of the ratio due to different responses of VV and VH values to
ice formation is relevant.
The unsupervised classification worked well on big lakes [24, 25], which is
also visible in my results. I got a good fit for most of the big lakes I tested, but
it did not result in any usable results for smaller lakes. Those were not inves-
tigated in the previous work using the classification algorithm. The reason
for this could be the limited information stored in the Sentinel-1 data, where
only two values are present, the smaller amount of actual data points in the
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lakes and the relatively big spread of the values across the same classes. I
think the difficulty here is stems from the small amount of information paired
with the high variance of the values within each class. Additionally, the huge
amount of different ice states [23] make it hard to use an easy classification
with only three classes. The coexistence of the several classes will also nega-
tively influence the recognition of ice. Previous work investigated only one
point in time and not a time series [25]. They did not have to take changing
ice dynamics into account. This made their idea usable for the specific case,
but it is not a good way for automatic ice detection over time. The threshold
values which are used in the existing literature [5, 10] and by the Canadian
Ice Secive (CIS) for the definition of ice is adjusted manually for every scene
of radar data. The usage of this approach was also good, as visible in fig-
ure 3.10 where the thresholds were defined. This made the initial attempt
kind of redundant, but I still wanted to try it, since it would have been one
of the easiest and fastest ways imaginable.

Looking at the SLC data and their usage in InSAR applications it is re-
ally hard to definitely tell whether a lake is just freezing or if it was already
frozen and the ice cover changed in one of many ways, maybe air bubbles
formed, snow covered the ice, whether there was already snow cover that got
wet/dry. . . The same impressions were gained in literature [9]: the coherence
value can be used to detect a changing environment, but not to exactly map
ice. For my work that meant that I could see changes in coherence that fit
quite well to the ice extent (see figure 3.20) but there were also some values
that would indicate ice which was not present on the same image.
This is one of the difficulties on coherence measurements for change detec-
tion on lakes: If a pixel has a very high coherence value, there are different
possibilities why this is the case. Firstly, the lake could be calm in both used
scenes, there would be no real change and thus a high coherence is occurring.
Secondly, there is flat ice, thus it is resulting in a high coherence because on
both scenes the reflection would be more or less the same, especially if the
ice did not change at all (Not getting thicker, no new snow, no change in
the existing snow on the ice . . . ). Thirdly, there could be calm water and
thin flat ice, which again, would reflect pretty much the same signals leading
to high coherence. The most important factor are waves. Waves make the
signal unpredictable. If the coincidence leads to a comparable wave pattern
and to comparable reflection phases, the coherence will be high. But depen-
dent on the current wave structure on the lake the coherence could be high
if compared to any of the states. Even ice cracks can have a high coherence
in comparison to waves if the random reflection leads to this. The viability
of the described topophase band produced is not given as well. Even though
there is an increase when the lake is freezing (see figure 3.19) the values de-
crease again just to increase again. It seems like the different states of the ice
cover have an impact on the data, which is likely due to the changing height
when e.g. snow is accumulating or ice thickens. The high coherence on the
shoreline pixels in some results could be due to freezing of the whole water
column which would result in a reflection of the ground. This would lead to
the same signal since a significant change in the basement of the lake is not



68 Chapter 7. Discussion

expected [26]. The viability of coherence or interferograms is generally ex-
pected to be higher for largely unchanged areas [22], so dynamic lakes, that
can be influenced by wind, are not the best study site, even though there was
some work done using InSAR before to detect ice on water [6, 9, 21]. Open
water and bubble-free ice share the property of low backscatter and therefore
low coherence [26, 62]. Furthermore, flooded ice, cracked ice and ice covers
with changing ice dynamics show low coherence values for Sentinel-1A im-
agery [26]. The coherence can not be used to perfectly map the ice extent. If
only the coherence over time is watched there is a high possibility that the
different ice types get mixed up and wavy water and ice are missclassified as
the same.
Due to the different interactions of VV and VH with fresh ice it should be pos-
sible to detect the ice by using the X-polarised interferogram. They should
represent different surface conditions but unfortunately they do not. All
lakes show an increase in both the topophase and the coherence bands when
there is no significant change in lake ice cover, as well as increases when ice
is occurring first. But there is not a single lake sampled here that is showing
a significant pattern only when ice is present. This is likely caused by a mul-
titude of effects. The basic assumption that ice and water interact differently
with the signal is probably not wrong and thus there should be differences
in the interferograms. But there are again many other factors that lead to dif-
ferent results: Different ice types and different snow covers lead to different
forms of scattering when interacting with the incoming signal. Plus, it is pos-
sible that the total amount of backscatter varies a lot. Different penetration
depth of VV and VH waves were investigated looking at the topophase band,
but it did not show a reliable result either, maybe because the relevant change
in topography could also be due to little waves. The increase throughout the
freezing period is unfortunately occurring later again (figure 3.24) and the
quite big difference between the two scenes taken on the same date is alarm-
ing. For the other lakes the results are even worse.
Unfortunately I did not find any literature where this was done previously.
It makes perfect sense for me to investigate this but maybe the usefulness is
so low that no one really published anything about this.

Combining all these results only the used method of the lake wide mean
of the ratio VV

VH is resulting in a good detection of the freeze-up, even though
it is not usable to detect the ice-extent for obvious reasons. Using the lake
wide mean has both positive influences on the computational time, since its
easier to calculate and compare one value for the whole lake and on the ac-
tual result since the problem of floating-ice on the lake and ground-fast ice on
the shoreline is neglegible. Ground-fast ice has low backscatter values com-
pared to the higher values of floating ice [17], hence the pixel-signal would
not change much when the whole water column is freezing between two ob-
servations, the lake wide mean is changing. At least if there is only ground-
fast freezing on the shorelines. "Birtevatn" and the other lakes in Norway
show comparably less variability during the observed time series shown in
the validation section. This could be due to less disturbance of the surface of
the lakes since they are located in valleys.
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Problems can occur if Lakes change their area compared to the one cov-
ered by the shapefile. If the lake is extended not all possible data is used and
- more important - if it is shrinking mixed pixels will be taken into account.

Maybe there are other approaches that could be fine tuned or combined
for getting the result I want to get, but none of the tested ones is working per-
fectly. The many different influences on the backscatter lead to uncertainty
even on the accepted result. If one wants to increase the accuracy of the re-
sult it would be helpful to have more channels of satellite data [1]. Especially
the HH and HV bands would be helpful since they showed earlier that they
are more sensitive to ice [2, 4]. Another idea would be to use private satel-
lite data with individually set temporal and spatial resolutions. Those could
help finding even better results but were not usable for the current project.
Coming back to the initially stated research questions, it is apparent that the
ice extent is not mapped using the described method since whole lakes and
not single lake pixels are looked at. The more important part, the detection
of the freeze-up of the lake surface is working quite good for a big amount
of lakes in a really short time. Thus I am confident to say, that this method
is doing what it is intended to do, even though more research would clearly
help to improve the results.
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A Processing source code

A.1 SNAP - GRD preprocessing

1 <graph id="Graph">
2 <version>1.0</version>
3 <node id="Read">
4 <operator>Read</operator>
5 <sources/>
6 <parameters class="com.bc.ceres.binding.dom.XppDomElement">
7 <file>\${Filename}</file>
8 </parameters>
9 </node>

10 <node id="ThermalNoiseRemoval">
11 <operator>ThermalNoiseRemoval</operator>
12 <sources>
13 <sourceProduct refid="Read"/>
14 </sources>
15 <parameters class="com.bc.ceres.binding.dom.XppDomElement">
16 <selectedPolarisations/>
17 <removeThermalNoise>true</removeThermalNoise>
18 <reIntroduceThermalNoise>false</reIntroduceThermalNoise>
19 </parameters>
20 </node>
21 <node id="Apply-Orbit-File">
22 <operator>Apply-Orbit-File</operator>
23 <sources>
24 <sourceProduct refid="ThermalNoiseRemoval"/>
25 </sources>
26 <parameters class="com.bc.ceres.binding.dom.XppDomElement">
27 <orbitType>Sentinel Precise (Auto Download)</orbitType>
28 <polyDegree>3</polyDegree>
29 <continueOnFail>true</continueOnFail>
30 </parameters>
31 </node>
32 <node id="Calibration">
33 <operator>Calibration</operator>
34 <sources>
35 <sourceProduct refid="Apply-Orbit-File"/>
36 </sources>
37 <parameters class="com.bc.ceres.binding.dom.XppDomElement">
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38 <sourceBands/>
39 <auxFile>Product Auxiliary File</auxFile>
40 <externalAuxFile/>
41 <outputImageInComplex>false</outputImageInComplex>
42 <outputImageScaleInDb>false</outputImageScaleInDb>
43 <createGammaBand>false</createGammaBand>
44 <createBetaBand>false</createBetaBand>
45 <selectedPolarisations/>
46 <outputSigmaBand>true</outputSigmaBand>
47 <outputGammaBand>false</outputGammaBand>
48 <outputBetaBand>false</outputBetaBand>
49 </parameters>
50 </node>
51 <node id="Speckle-Filter">
52 <operator>Speckle-Filter</operator>
53 <sources>
54 <sourceProduct refid="Calibration"/>
55 </sources>
56 <parameters class="com.bc.ceres.binding.dom.XppDomElement">
57 <sourceBands/>
58 <filter>Lee Sigma</filter>
59 <filterSizeX>3</filterSizeX>
60 <filterSizeY>3</filterSizeY>
61 <dampingFactor>2</dampingFactor>
62 <estimateENL>true</estimateENL>
63 <enl>1.0</enl>
64 <numLooksStr>1</numLooksStr>
65 <windowSize>5x5</windowSize>
66 <targetWindowSizeStr>3x3</targetWindowSizeStr>
67 <sigmaStr>0.9</sigmaStr>
68 <anSize>50</anSize>
69 </parameters>
70 </node>
71 <node id="Terrain-Correction">
72 <operator>Terrain-Correction</operator>
73 <sources>
74 <sourceProduct refid="Speckle-Filter"/>
75 </sources>
76 <parameters class="com.bc.ceres.binding.dom.XppDomElement">
77 <sourceBands/>
78 <demName>ASTER 1sec GDE</demName>
79 <demResamplingMethod>BILINEAR_INTERPOLATION</demResamplingMethod>
80 <imgResamplingMethod>BILINEAR_INTERPOLATION</imgResamplingMethod>
81 <pixelSpacingInMeter>10.0</pixelSpacingInMeter>
82 <pixelSpacingInDegree>8.983152841195215E-5</pixelSpacingInDegree>
83 <mapProjection>GEOGCS[&quot;WGS84(DD)&quot;, &#xd;
84 DATUM[&quot;WGS84&quot;, &#xd;
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85 SPHEROID[&quot;WGS84&quot;, 6378137.0, 298.257223563]], &#xd;
86 PRIMEM[&quot;Greenwich&quot;, 0.0], &#xd;
87 UNIT[&quot;degree&quot;, 0.017453292519943295], &#xd;
88 AXIS[&quot;Geodetic longitude&quot;, EAST], &#xd;
89 AXIS[&quot;Geodetic latitude&quot;, NORTH]]</mapProjection>
90 <alignToStandardGrid>false</alignToStandardGrid>
91 <standardGridOriginX>0.0</standardGridOriginX>
92 <standardGridOriginY>0.0</standardGridOriginY>
93 <nodataValueAtSea>false</nodataValueAtSea>
94 <saveDEM>false</saveDEM>
95 <saveLatLon>false</saveLatLon>
96 <saveIncidenceAngleFromEllipsoid>false
97 </saveIncidenceAngleFromEllipsoid>
98 <saveLocalIncidenceAngle>false</saveLocalIncidenceAngle>
99 <saveProjectedLocalIncidenceAngle>false

100 </saveProjectedLocalIncidenceAngle>
101 <saveSelectedSourceBand>true</saveSelectedSourceBand>
102 <outputComplex>false</outputComplex>
103 <applyRadiometricNormalization>false</applyRadiometricNormalization>
104 <saveSigmaNought>false</saveSigmaNought>
105 <saveGammaNought>false</saveGammaNought>
106 <saveBetaNought>false</saveBetaNought>
107 <incidenceAngleForSigma0>Use projected local incidence angle from
108 DEM</incidenceAngleForSigma0>
109 <incidenceAngleForGamma0>Use projected local incidence angle from
110 DEM</incidenceAngleForGamma0>
111 <auxFile>Latest Auxiliary File</auxFile>
112 <externalAuxFile/>
113 </parameters>
114 </node>
115 <node id="BandMaths">
116 <operator>BandMaths</operator>
117 <sources>
118 <sourceProduct refid="Terrain-Correction"/>
119 </sources>
120 <parameters class="com.bc.ceres.binding.dom.XppDomElement">
121 <targetBands>
122 <targetBand>
123 <name>Ratio</name>
124 <type>float32</type>
125 <expression>Sigma0_VV / Sigma0_VH</expression>
126 <description/>
127 <unit/>
128 <noDataValue>0.0</noDataValue>
129 </targetBand>
130 </targetBands>
131 <variables/>
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132 </parameters>
133 </node>
134 </graph>
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A.2 SNAP - SLC processing

1 <graph id="Graph">
2 <version>1.0</version>
3 <node id="Read">
4 <operator>Read</operator>
5 <sources/>
6 <parameters class="com.bc.ceres.binding.dom.XppDomElement"/>
7 </node>
8 <node id="Interferogram">
9 <operator>Interferogram</operator>

10 <sources>
11 <sourceProduct refid="Read"/>
12 </sources>
13 <parameters class="com.bc.ceres.binding.dom.XppDomElement">
14 <subtractFlatEarthPhase>true</subtractFlatEarthPhase>
15 <srpPolynomialDegree>5</srpPolynomialDegree>
16 <srpNumberPoints>501</srpNumberPoints>
17 <orbitDegree>3</orbitDegree>
18 <includeCoherence>true</includeCoherence>
19 <cohWinAz>2</cohWinAz>
20 <cohWinRg>10</cohWinRg>
21 <squarePixel>true</squarePixel>
22 <subtractTopographicPhase>false</subtractTopographicPhase>
23 <demName>SRTM 3Sec</demName>
24 <externalDEMFile/>
25 <externalDEMNoDataValue>0.0</externalDEMNoDataValue>
26 <externalDEMApplyEGM>true</externalDEMApplyEGM>
27 <tileExtensionPercent>100</tileExtensionPercent>
28 <outputElevation>false</outputElevation>
29 <outputLatLon>false</outputLatLon>
30 </parameters>
31 </node>
32 <node id="TOPSAR-Deburst">
33 <operator>TOPSAR-Deburst</operator>
34 <sources>
35 <sourceProduct refid="Interferogram"/>
36 </sources>
37 <parameters class="com.bc.ceres.binding.dom.XppDomElement">
38 <selectedPolarisations/>
39 </parameters>
40 </node>
41 <node id="TOPSAR-Merge">
42 <operator>TOPSAR-Merge</operator>
43 <sources>
44 <sourceProduct refid="TOPSAR-Deburst"/>
45 </sources>
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46 <parameters class="com.bc.ceres.binding.dom.XppDomElement">
47 <selectedPolarisations/>
48 </parameters>
49 </node>
50 <node id="TopoPhaseRemoval">
51 <operator>TopoPhaseRemoval</operator>
52 <sources>
53 <sourceProduct refid="TOPSAR-Merge"/>
54 </sources>
55 <parameters class="com.bc.ceres.binding.dom.XppDomElement">
56 <orbitDegree>3</orbitDegree>
57 <demName>ASTER 1sec GDEM</demName>
58 <externalDEMFile/>
59 <externalDEMNoDataValue>0.0</externalDEMNoDataValue>
60 <tileExtensionPercent>100</tileExtensionPercent>
61 <outputTopoPhaseBand>false</outputTopoPhaseBand>
62 <outputElevationBand>false</outputElevationBand>
63 <outputLatLonBands>false</outputLatLonBands>
64 </parameters>
65 </node>
66 <node id="GoldsteinPhaseFiltering">
67 <operator>GoldsteinPhaseFiltering</operator>
68 <sources>
69 <sourceProduct refid="TopoPhaseRemoval"/>
70 </sources>
71 <parameters class="com.bc.ceres.binding.dom.XppDomElement">
72 <alpha>1.0</alpha>
73 <FFTSizeString>64</FFTSizeString>
74 <windowSizeString>3</windowSizeString>
75 <useCoherenceMask>false</useCoherenceMask>
76 <coherenceThreshold>0.2</coherenceThreshold>
77 </parameters>
78 </node>
79 <node id="Terrain-Correction">
80 <operator>Terrain-Correction</operator>
81 <sources>
82 <sourceProduct refid="GoldsteinPhaseFiltering"/>
83 </sources>
84 <parameters class="com.bc.ceres.binding.dom.XppDomElement">
85 <sourceBands/>
86 <demName>ASTER 1sec GDEM</demName>
87 <externalDEMFile/>
88 <externalDEMNoDataValue>0.0</externalDEMNoDataValue>
89 <externalDEMApplyEGM>true</externalDEMApplyEGM>
90 <demResamplingMethod>BILINEAR_INTERPOLATION</demResamplingMethod>
91 <imgResamplingMethod>BILINEAR_INTERPOLATION</imgResamplingMethod>
92 <pixelSpacingInMeter>0.0</pixelSpacingInMeter>
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93 <pixelSpacingInDegree>0.0</pixelSpacingInDegree>
94 <mapProjection>GEOGCS[&quot;WGS84(DD)&quot;, &#xd;
95 DATUM[&quot;WGS84&quot;, &#xd;
96 SPHEROID[&quot;WGS84&quot;, 6378137.0, 298.257223563]], &#xd;
97 PRIMEM[&quot;Greenwich&quot;, 0.0], &#xd;
98 UNIT[&quot;degree&quot;, 0.017453292519943295], &#xd;
99 AXIS[&quot;Geodetic longitude&quot;, EAST], &#xd;

100 AXIS[&quot;Geodetic latitude&quot;, NORTH]]</mapProjection>
101 <alignToStandardGrid>false</alignToStandardGrid>
102 <standardGridOriginX>0.0</standardGridOriginX>
103 <standardGridOriginY>0.0</standardGridOriginY>
104 <nodataValueAtSea>false</nodataValueAtSea>
105 <saveDEM>false</saveDEM>
106 <saveLatLon>false</saveLatLon>
107 <saveIncidenceAngleFromEllipsoid>false
108 </saveIncidenceAngleFromEllipsoid>
109 <saveLocalIncidenceAngle>false</saveLocalIncidenceAngle>
110 <saveProjectedLocalIncidenceAngle>false
111 </saveProjectedLocalIncidenceAngle>
112 <saveSelectedSourceBand>true</saveSelectedSourceBand>
113 <outputComplex>false</outputComplex>
114 <applyRadiometricNormalization>false</applyRadiometricNormalization>
115 <saveSigmaNought>false</saveSigmaNought>
116 <saveGammaNought>false</saveGammaNought>
117 <saveBetaNought>false</saveBetaNought>
118 <incidenceAngleForSigma0>Use projected local incidence angle from
119 DEM</incidenceAngleForSigma0>
120 <incidenceAngleForGamma0>Use projected local incidence angle from
121 DEM</incidenceAngleForGamma0>
122 <auxFile>Latest Auxiliary File</auxFile>
123 <externalAuxFile/>
124 </parameters>
125

126 <applicationData id="Presentation">
127 <Description/>
128 <node id="Read">
129 <displayPosition x="15.0" y="20.0"/> </node>
130 <node id="Interferogram">
131 <displayPosition x="1.0" y="70.0"/></node>
132 <node id="TOPSAR-Deburst">
133 <displayPosition x="108.0" y="70.0"/></node>
134 <node id="TOPSAR-Merge">
135 <displayPosition x="112.0" y="20.0"/> </node>
136 <node id="TopoPhaseRemoval">
137 <displayPosition x="229.0" y="20.0"/></node>
138 <node id="GoldsteinPhaseFiltering">
139 <displayPosition x="217.0" y="70.0"/></node>
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140 <node id="Terrain-Correction">
141 <displayPosition x="379.0" y="70.0"/></node>
142 </applicationData>
143 </graph>
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A.3 GEE codes

A.3.1 Time series

1 /////////////////////////////
2 // Predefine Functions
3 /////////////////////////////
4

5 // Function to add Ratio
6 var addRatio = function(image) {
7 return image.addBands(image.expression("VV/VH",
8 {
9 "VH": image.select(["VH"]),

10 "VV": image.select(["VV"])
11 }
12 ).rename("Ratio"));
13 };
14

15 // This is a function by Guido Lemoine to apply a Refined-Lee-Speckle
16 // Filter on Sentinel-1 data.
17 //(https://code.earthengine.google.com/2ef38463ebaf5ae133a478f173fd0ab5,
18 // last checked on \nth{27} November 2019)
19

20 function RefinedLee(img) {
21 // img must be in natural units, i.e. not in dB!
22 // Set up 3x3 kernels
23 var weights3 = ee.List.repeat(ee.List.repeat(1,3),3);
24 var kernel3 = ee.Kernel.fixed(3,3, weights3, 1, 1, false);
25 var mean3 = img.reduceNeighborhood(ee.Reducer.mean(), kernel3);
26 var variance3 = img.reduceNeighborhood(ee.Reducer.variance(), kernel3);
27 // Use a sample of the 3x3 windows inside a 7x7 windows to determine
28 // gradients and directions
29 var sample_weights = ee.List([[0,0,0,0,0,0,0],

[0,1,0,1,0,1,0],[0,0,0,0,0,0,0],[0,1,0,1,0,1,0],
[0,0,0,0,0,0,0],[0,1,0,1,0,1,0],[0,0,0,0,0,0,0]]);

↪→

↪→

30 var sample_kernel = ee.Kernel.fixed(7,7, sample_weights, 3,3, false);
31 // Calculate mean and variance for the sampled windows and store as 9 bands
32 var sample_mean = mean3.neighborhoodToBands(sample_kernel);
33 var sample_var = variance3.neighborhoodToBands(sample_kernel);
34 // Determine the 4 gradients for the sampled windows
35 var gradients =

sample_mean.select(1).subtract(sample_mean.select(7)).abs();↪→

36 gradients = gradients.addBands(sample_mean.select(6).subtract(sample_mean
37 .select(2)).abs());
38 gradients = gradients.addBands(sample_mean.select(3).subtract(sample_mean
39 .select(5)).abs());
40 gradients = gradients.addBands(sample_mean.select(0).subtract(sample_mean
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41 .select(8)).abs());
42

43 // And find the maximum gradient amongst gradient bands
44 var max_gradient = gradients.reduce(ee.Reducer.max());
45 // Create a mask for band pixels that are the maximum gradient
46 var gradmask = gradients.eq(max_gradient);
47

48 // duplicate gradmask bands: each gradient represents 2 directions
49 gradmask = gradmask.addBands(gradmask);
50 // Determine the 8 directions
51 var directions = sample_mean.select(1).subtract(sample_mean.select(4)). c

gt(sample_mean.select(4).subtract(sample_mean.select(7))).multiply(1);↪→

52 directions = directions.addBands(sample_mean.select(6). c
subtract(sample_mean.select(4)).gt(sample_mean.select(4). c
subtract(sample_mean.select(2))).multiply(2));

↪→

↪→

53 directions = directions.addBands(sample_mean.select(3). c
subtract(sample_mean.select(4)).gt(sample_mean.select(4). c
subtract(sample_mean.select(5))).multiply(3));

↪→

↪→

54 directions = directions.addBands(sample_mean.select(0). c
subtract(sample_mean.select(4)).gt(sample_mean.select(4). c
subtract(sample_mean.select(8))).multiply(4));

↪→

↪→

55 // The next 4 are the not() of the previous 4
56 directions = directions.addBands(directions.select(0).not().multiply(5));
57 directions = directions.addBands(directions.select(1).not().multiply(6));
58 directions = directions.addBands(directions.select(2).not().multiply(7));
59 directions = directions.addBands(directions.select(3).not().multiply(8));
60 // Mask all values that are not 1-8
61 directions = directions.updateMask(gradmask);
62 // "collapse" the stack into a singe band image (due to masking, each
63 // pixel has just one value (1-8) in it"s directional band, and is
64 // otherwise masked)
65 directions = directions.reduce(ee.Reducer.sum());
66 // Generate stats
67 var sample_stats = sample_var.divide(sample_mean.multiply(sample_mean));
68 // Calculate localNoiseVariance
69 var sigmaV = sample_stats.toArray().arraySort().arraySlice(0,0,5). c

arrayReduce(ee.Reducer.mean(),
[0]);

↪→

↪→

70 // Set up the 7*7 kernels for directional statistics
71 var rect_weights = ee.List.repeat(ee.List.repeat(0,7),3).cat(ee.List. c

repeat(ee.List.repeat(1,7),4));↪→

72

73 // Set weights
74 var diag_weights = ee.List([[1,0,0,0,0,0,0], [1,1,0,0,0,0,0],

[1,1,1,0,0,0,0], [1,1,1,1,0,0,0], [1,1,1,1,1,0,0], [1,1,1,1,1,1,0],
[1,1,1,1,1,1,1]]);

↪→

↪→
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75 var rect_kernel = ee.Kernel.fixed(7,7, rect_weights, 3, 3, false);
76 var diag_kernel = ee.Kernel.fixed(7,7, diag_weights, 3, 3, false);
77 // Create stacks for mean and variance using the original kernels.
78 // Mask with relevant direction.
79 var dir_mean = img.reduceNeighborhood(ee.Reducer.mean(),

rect_kernel).updateMask(directions.eq(1));↪→

80 var dir_var = img.reduceNeighborhood(ee.Reducer.variance(),
rect_kernel).updateMask(directions.eq(1));↪→

81 dir_mean = dir_mean.addBands(img.reduceNeighborhood(ee.Reducer. c
mean(),diag_kernel).updateMask(directions.eq(2)));↪→

82 dir_var = dir_var.addBands(img.reduceNeighborhood(ee.Reducer. c
variance(),diag_kernel).updateMask(directions.eq(2)));↪→

83

84 // and add the bands for rotated kernels
85 for (var i=1; i<4; i++) {
86 dir_mean = dir_mean.addBands(img.reduceNeighborhood(ee.Reducer. c

mean(),rect_kernel.rotate(i)).updateMask(directions.eq(2*i+1)));↪→

87 dir_var = dir_var.addBands(img.reduceNeighborhood(ee.Reducer. c
variance(),rect_kernel.rotate(i)).updateMask(directions.eq(2*i+1)));↪→

88 dir_mean = dir_mean.addBands(img.reduceNeighborhood(ee.Reducer. c
mean(),diag_kernel.rotate(i)).updateMask(directions.eq(2*i+2)));↪→

89 dir_var = dir_var.addBands(img.reduceNeighborhood(ee.Reducer. c
variance(),diag_kernel.rotate(i)).updateMask(directions.eq(2*i+2)));↪→

90 }
91 // "collapse" the stack into a single band image (due to masking, each

pixel↪→

92 // has just one value in it"s directional band, and is otherwise masked)
93 dir_mean = dir_mean.reduce(ee.Reducer.sum());
94 dir_var = dir_var.reduce(ee.Reducer.sum());
95 // A finally generate the filtered value
96 var varX = dir_var.subtract(dir_mean.multiply(dir_mean).multiply(sigmaV)). c

divide(sigmaV.add(1.0));↪→

97 var b = varX.divide(dir_var);
98 var result = dir_mean.add(b.multiply(img.subtract(dir_mean)));
99 return(result.arrayFlatten([["sum"]]));

100 }
101

102 // Function to use the Lee-Filter on the two bands and add them to the
image.↪→

103 function UseLee(img){
104 img = img.addBands(RefinedLee(img.select("VV")))
105 img = img.addBands(RefinedLee(img.select("VH")))
106 .rename("V","H","angle","VV","VH")
107 return ee.Image(img.copyProperties(img)
108 .copyProperties({source: img, properties: ["system:time_start"]}))
109 }
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110

111 /////////////////////////////////////////////////
112 // VARIABLES
113 /////////////////////////////////////////////////
114 // Define start and end date of the time series
115 var start = "2017-12-01"
116 var end = "2018-03-01"
117 // aoi is the lake polygon minus 10m per side.
118 var aoi = geometry
119

120 // Create image collection covering the lake from start to end dates
121 var s1 = ee.ImageCollection("COPERNICUS/S1_GRD_FLOAT")
122 .filterBounds(aoi)
123 .filterDate(start, end)
124 .filterMetadata("transmitterReceiverPolarisation",
125 ."equals", ["VV", "VH"])
126 .filterMetadata("resolution_meters", "equals" , 10)
127 .sort("system:time_start")
128

129 // Use speckle filter and ratio-adding function on the image collection
130 s1 = s1.map(UseLee)
131 s1 = s1.map(addRatio)
132

133 // Create the time series with the mean ratio of the lake.
134 var tempTimeSeries = ui.Chart.image.seriesByRegion(
135 s1, geometry, ee.Reducer.mean(), "Ratio", 50,
136 "system:time_start", "label")
137 .setChartType("ScatterChart")
138 .setOptions({
139 title: "Ratio",
140 vAxis: {title: "VV/VH"},
141 lineWidth: 1,
142 pointSize: 4,
143 series: {
144 0: {color: "FF0000"},
145 }});
146

147

148 // Print the time series
149 print(tempTimeSeries)
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A.3.2 Thresholds

1 /////////////////////////////
2 // Predefine Functions
3 /////////////////////////////
4

5 // This is a function by Guido Lemoine to apply a Refined-Lee-Speckle
6 // Filter on Sentinel-1 data.
7 //(https://code.earthengine.google.com/2ef38463ebaf5ae133a478f173fd0ab5,
8 // last checked on \nth{27} November 2019)
9

10 function RefinedLee(img) {
11 // img must be in natural units, i.e. not in dB!
12 // Set up 3x3 kernels
13 var weights3 = ee.List.repeat(ee.List.repeat(1,3),3);
14 var kernel3 = ee.Kernel.fixed(3,3, weights3, 1, 1, false);
15 var mean3 = img.reduceNeighborhood(ee.Reducer.mean(), kernel3);
16 var variance3 = img.reduceNeighborhood(ee.Reducer.variance(), kernel3);
17 // Use a sample of the 3x3 windows inside a 7x7 windows to determine
18 // gradients and directions
19 var sample_weights = ee.List([[0,0,0,0,0,0,0],

[0,1,0,1,0,1,0],[0,0,0,0,0,0,0], [0,1,0,1,0,1,0],
[0,0,0,0,0,0,0],[0,1,0,1,0,1,0],[0,0,0,0,0,0,0]]);

↪→

↪→

20 var sample_kernel = ee.Kernel.fixed(7,7, sample_weights, 3,3, false);
21 // Calculate mean and variance for the sampled windows and store as 9 bands
22 var sample_mean = mean3.neighborhoodToBands(sample_kernel);
23 var sample_var = variance3.neighborhoodToBands(sample_kernel);
24 // Determine the 4 gradients for the sampled windows
25 var gradients =

sample_mean.select(1).subtract(sample_mean.select(7)).abs();↪→

26 gradients = gradients.addBands(sample_mean.select(6).subtract(sample_mean. c
select(2)).abs());↪→

27 gradients = gradients.addBands(sample_mean.select(3).subtract(sample_mean. c
select(5)).abs());↪→

28 gradients = gradients.addBands(sample_mean.select(0).subtract(sample_mean. c
select(8)).abs());↪→

29

30 // And find the maximum gradient amongst gradient bands
31 var max_gradient = gradients.reduce(ee.Reducer.max());
32 // Create a mask for band pixels that are the maximum gradient
33 var gradmask = gradients.eq(max_gradient);
34

35 // duplicate gradmask bands: each gradient represents 2 directions
36 gradmask = gradmask.addBands(gradmask);
37 // Determine the 8 directions
38 var directions = sample_mean.select(1).subtract(sample_mean.select(4)). c

gt(sample_mean.select(4).subtract(sample_mean.select(7))).multiply(1);↪→
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39 directions = directions.addBands(sample_mean.select(6). c
subtract(sample_mean.select(4)).gt(sample_mean.select(4). c
subtract(sample_mean.select(2))).multiply(2));

↪→

↪→

40 directions = directions.addBands(sample_mean.select(3). c
subtract(sample_mean.select(4)).gt(sample_mean.select(4). c
subtract(sample_mean.select(5))).multiply(3));

↪→

↪→

41 directions = directions.addBands(sample_mean.select(0). c
subtract(sample_mean.select(4)).gt(sample_mean.select(4). c
subtract(sample_mean.select(8))).multiply(4));

↪→

↪→

42 // The next 4 are the not() of the previous 4
43 directions = directions.addBands(directions.select(0).not().multiply(5));
44 directions = directions.addBands(directions.select(1).not().multiply(6));
45 directions = directions.addBands(directions.select(2).not().multiply(7));
46 directions = directions.addBands(directions.select(3).not().multiply(8));
47 // Mask all values that are not 1-8
48 directions = directions.updateMask(gradmask);
49 // "collapse" the stack into a singe band image (due to masking, each
50 // pixel has just one value (1-8) in it"s directional band, and is
51 // otherwise masked)
52 directions = directions.reduce(ee.Reducer.sum());
53 // Generate stats
54 var sample_stats = sample_var.divide(sample_mean.multiply(sample_mean));
55 // Calculate localNoiseVariance
56 var sigmaV = sample_stats.toArray().arraySort().arraySlice(0,0,5). c

arrayReduce(ee.Reducer.mean(),
[0]);

↪→

↪→

57 // Set up the 7*7 kernels for directional statistics
58 var rect_weights = ee.List.repeat(ee.List.repeat(0,7),3).cat(ee.List. c

repeat(ee.List.repeat(1,7),4));↪→

59

60 // Set weights
61 var diag_weights = ee.List([[1,0,0,0,0,0,0], [1,1,0,0,0,0,0],

[1,1,1,0,0,0,0],[1,1,1,1,0,0,0], [1,1,1,1,1,0,0], [1,1,1,1,1,1,0],
[1,1,1,1,1,1,1]]);

↪→

↪→

62 var rect_kernel = ee.Kernel.fixed(7,7, rect_weights, 3, 3, false);
63 var diag_kernel = ee.Kernel.fixed(7,7, diag_weights, 3, 3, false);
64 // Create stacks for mean and variance using the original kernels.
65 // Mask with relevant direction.
66 var dir_mean = img.reduceNeighborhood(ee.Reducer.mean(),

rect_kernel).updateMask(directions.eq(1));↪→

67 var dir_var = img.reduceNeighborhood(ee.Reducer.variance(),
rect_kernel).updateMask(directions.eq(1));↪→

68 dir_mean = dir_mean.addBands(img.reduceNeighborhood(ee.Reducer. c
mean(),diag_kernel).updateMask(directions.eq(2)));↪→

69 dir_var = dir_var.addBands(img.reduceNeighborhood(ee.Reducer. c
variance(),diag_kernel).updateMask(directions.eq(2)));↪→
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70

71 // and add the bands for rotated kernels
72 for (var i=1; i<4; i++) {
73 dir_mean = dir_mean.addBands(img.reduceNeighborhood(ee.Reducer. c

mean(),rect_kernel.rotate(i)).updateMask(directions.eq(2*i+1)));↪→

74 dir_var = dir_var.addBands(img.reduceNeighborhood(ee.Reducer. c
variance(),rect_kernel.rotate(i)).updateMask(directions.eq(2*i+1)));↪→

75 dir_mean = dir_mean.addBands(img.reduceNeighborhood(ee.Reducer. c
mean(),diag_kernel.rotate(i)).updateMask(directions.eq(2*i+2)));↪→

76 dir_var = dir_var.addBands(img.reduceNeighborhood(ee.Reducer. c
variance(),diag_kernel.rotate(i)).updateMask(directions.eq(2*i+2)));↪→

77 }
78 // "collapse" the stack into a single band image (due to masking, each

pixel↪→

79 // has just one value in it"s directional band, and is otherwise masked)
80 dir_mean = dir_mean.reduce(ee.Reducer.sum());
81 dir_var = dir_var.reduce(ee.Reducer.sum());
82 // A finally generate the filtered value
83 var varX = dir_var.subtract(dir_mean.multiply(dir_mean).multiply(sigmaV))
84 .divide(sigmaV.add(1.0));
85 var b = varX.divide(dir_var);
86 var result = dir_mean.add(b.multiply(img.subtract(dir_mean)));
87 return(result.arrayFlatten([["sum"]]));
88 }
89

90 // Function to use the Lee-Filter on the two bands and
91 // add them to the image.
92 function UseLee(img){
93 img = img.addBands(RefinedLee(img.select("VV")))
94 img = img.addBands(RefinedLee(img.select("VH")))
95 .rename("V","H","angle","VV","VH")
96 return ee.Image(img.copyProperties(img)
97 .copyProperties({source: img, properties: ["system:time_start"]}))
98 }
99

100

101 // --------------------------------------------------------------------
102 // Functions to add band containing normalized difference
103 // between VH and VV, the Ratio and the Product
104 // --------------------------------------------------------------------
105 function addRatio(image) {
106 return image.addBands(image.expression("VV/VH",
107 {
108 "VH": image.select(["VH"]),
109 "VV": image.select(["VV"])
110 }
111 ).rename("Ratio"))}
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112

113 function addProduct(image) {
114 return image.addBands(image.expression("VV*VH / 100",
115 {
116 "VH": image.select(["VH"]),
117 "VV": image.select(["VV"])
118 }
119 ).rename("Product"))}
120

121 function addDiff(image) {
122 return image.addBands(image.expression("100*(VV-VH)/(VV+VH)",
123 {
124 "VH": image.select(["VH"]),
125 "VV": image.select(["VV"])
126 }
127 ).rename("Diff"))}
128

129 // Get imageCollection that is covering the geometry which is
130 // a imported shapefile of the lake.
131 var S1 = ee.ImageCollection("COPERNICUS/S1_GRD_FLOAT")
132 .filterBounds(geometry)
133 .filterDate("2018-03-03", "2018-03-04")
134 .filterMetadata("transmitterReceiverPolarisation",
135 "equals", ["VV", "VH"])
136 .filterMetadata("resolution_meters", "equals" , 10)
137

138 // Mosaic image to cover whole lake area if necessary
139 S1 = S1.mosaic()
140

141 // Use speckle filter and add Ratio etc.
142 S1 = UseLee(S1)
143 S1 = addRatio(S1)
144 S1 = addDiff(S1)
145 S1 = addProduct(S1)
146 Map.addLayer(S1)
147

148

149 // Define the thresholds
150 var R = 6.6
151 var VV = 0.01
152 var VH = 0.0018
153

154 // Select only those pixels that are above/below the thresholds.
155 var S1_VV = (S1.select("VV").gt(VV))
156 var S1_VH = (S1.select("VH").lt(VH))
157 var S1_Ratio = (S1.select("Ratio").gt(R))
158
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159 // Add layers to the map
160 Map.addLayer(S1_VV)
161 Map.addLayer(S1_VH)
162 Map.addLayer(S1_Ratio)
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A.3.3 K-Means classification

1 var addRatio = function(image) {
2 return image.addBands(image.expression("VV/VH",
3 {
4 "VH": image.select(["VH"]),
5 "VV": image.select(["VV"])
6 }
7 ).rename("Ratio"));
8 };
9

10

11 // This is a function by Guido Lemoine to apply a Refined-Lee-Speckle
12 // Filter on Sentinel-1 data.
13 //(https://code.earthengine.google.com/2ef38463ebaf5ae133a478f173fd0ab5,
14 // last checked on \nth{27} November 2019)
15

16 function RefinedLee(img) {
17 // img must be in natural units, i.e. not in dB!
18 // Set up 3x3 kernels
19 var weights3 = ee.List.repeat(ee.List.repeat(1,3),3);
20 var kernel3 = ee.Kernel.fixed(3,3, weights3, 1, 1, false);
21 var mean3 = img.reduceNeighborhood(ee.Reducer.mean(), kernel3);
22 var variance3 = img.reduceNeighborhood(ee.Reducer.variance(), kernel3);
23 // Use a sample of the 3x3 windows inside a 7x7 windows to determine
24 // gradients and directions
25 var sample_weights = ee.List([[0,0,0,0,0,0,0],

[0,1,0,1,0,1,0],[0,0,0,0,0,0,0], [0,1,0,1,0,1,0],
[0,0,0,0,0,0,0],[0,1,0,1,0,1,0],[0,0,0,0,0,0,0]]);

↪→

↪→

26 var sample_kernel = ee.Kernel.fixed(7,7, sample_weights, 3,3, false);
27 // Calculate mean and variance for the sampled windows and store as 9 bands
28 var sample_mean = mean3.neighborhoodToBands(sample_kernel);
29 var sample_var = variance3.neighborhoodToBands(sample_kernel);
30 // Determine the 4 gradients for the sampled windows
31 var gradients =

sample_mean.select(1).subtract(sample_mean.select(7)).abs();↪→

32 gradients = gradients.addBands(sample_mean.select(6).subtract(sample_mean. c
select(2)).abs());↪→

33 gradients = gradients.addBands(sample_mean.select(3).subtract(sample_mean. c
select(5)).abs());↪→

34 gradients = gradients.addBands(sample_mean.select(0).subtract(sample_mean. c
select(8)).abs());↪→

35

36 // And find the maximum gradient amongst gradient bands
37 var max_gradient = gradients.reduce(ee.Reducer.max());
38 // Create a mask for band pixels that are the maximum gradient
39 var gradmask = gradients.eq(max_gradient);
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40

41 // duplicate gradmask bands: each gradient represents 2 directions
42 gradmask = gradmask.addBands(gradmask);
43 // Determine the 8 directions
44 var directions = sample_mean.select(1).subtract(sample_mean.select(4)). c

gt(sample_mean.select(4).subtract(sample_mean.select(7))).multiply(1);↪→

45 directions = directions.addBands(sample_mean.select(6). c
subtract(sample_mean.select(4)).gt(sample_mean.select(4). c
subtract(sample_mean.select(2))).multiply(2));

↪→

↪→

46 directions = directions.addBands(sample_mean.select(3). c
subtract(sample_mean.select(4)).gt(sample_mean.select(4). c
subtract(sample_mean.select(5))).multiply(3));

↪→

↪→

47 directions = directions.addBands(sample_mean.select(0). c
subtract(sample_mean.select(4)).gt(sample_mean.select(4). c
subtract(sample_mean.select(8))).multiply(4));

↪→

↪→

48 // The next 4 are the not() of the previous 4
49 directions = directions.addBands(directions.select(0).not().multiply(5));
50 directions = directions.addBands(directions.select(1).not().multiply(6));
51 directions = directions.addBands(directions.select(2).not().multiply(7));
52 directions = directions.addBands(directions.select(3).not().multiply(8));
53 // Mask all values that are not 1-8
54 directions = directions.updateMask(gradmask);
55 // "collapse" the stack into a singe band image (due to masking, each
56 // pixel has just one value (1-8) in it"s directional band, and is
57 // otherwise masked)
58 directions = directions.reduce(ee.Reducer.sum());
59 // Generate stats
60 var sample_stats = sample_var.divide(sample_mean.multiply(sample_mean));
61 // Calculate localNoiseVariance
62 var sigmaV = sample_stats.toArray().arraySort().arraySlice(0,0,5). c

arrayReduce(ee.Reducer.mean(),
[0]);

↪→

↪→

63 // Set up the 7*7 kernels for directional statistics
64 var rect_weights = ee.List.repeat(ee.List.repeat(0,7),3).cat(ee.List. c

repeat(ee.List.repeat(1,7),4));↪→

65

66 // Set weights
67 var diag_weights = ee.List([[1,0,0,0,0,0,0], [1,1,0,0,0,0,0],

[1,1,1,0,0,0,0],[1,1,1,1,0,0,0], [1,1,1,1,1,0,0], [1,1,1,1,1,1,0],
[1,1,1,1,1,1,1]]);

↪→

↪→

68 var rect_kernel = ee.Kernel.fixed(7,7, rect_weights, 3, 3, false);
69 var diag_kernel = ee.Kernel.fixed(7,7, diag_weights, 3, 3, false);
70 // Create stacks for mean and variance using the original kernels.
71 // Mask with relevant direction.
72 var dir_mean = img.reduceNeighborhood(ee.Reducer.mean(),

rect_kernel).updateMask(directions.eq(1));↪→
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73 var dir_var = img.reduceNeighborhood(ee.Reducer.variance(),
rect_kernel).updateMask(directions.eq(1));↪→

74 dir_mean = dir_mean.addBands(img.reduceNeighborhood(ee.Reducer. c
mean(),diag_kernel).updateMask(directions.eq(2)));↪→

75 dir_var = dir_var.addBands(img.reduceNeighborhood(ee.Reducer. c
variance(),diag_kernel).updateMask(directions.eq(2)));↪→

76

77 // and add the bands for rotated kernels
78 for (var i=1; i<4; i++) {
79 dir_mean = dir_mean.addBands(img.reduceNeighborhood(ee.Reducer. c

mean(),rect_kernel.rotate(i)).updateMask(directions.eq(2*i+1)));↪→

80 dir_var = dir_var.addBands(img.reduceNeighborhood(ee.Reducer. c
variance(),rect_kernel.rotate(i)).updateMask(directions.eq(2*i+1)));↪→

81 dir_mean = dir_mean.addBands(img.reduceNeighborhood(ee.Reducer. c
mean(),diag_kernel.rotate(i)).updateMask(directions.eq(2*i+2)));↪→

82 dir_var = dir_var.addBands(img.reduceNeighborhood(ee.Reducer. c
variance(),diag_kernel.rotate(i)).updateMask(directions.eq(2*i+2)));↪→

83 }
84 // "collapse" the stack into a single band image (due to masking, each

pixel↪→

85 // has just one value in it"s directional band, and is otherwise masked)
86 dir_mean = dir_mean.reduce(ee.Reducer.sum());
87 dir_var = dir_var.reduce(ee.Reducer.sum());
88 // A finally generate the filtered value
89 var varX = dir_var.subtract(dir_mean.multiply(dir_mean).multiply(sigmaV))
90 .divide(sigmaV.add(1.0));
91 var b = varX.divide(dir_var);
92 var result = dir_mean.add(b.multiply(img.subtract(dir_mean)));
93 return(result.arrayFlatten([["sum"]]));
94 }
95

96

97 // Function to use the Lee-Filter on the two bands and add them to the
image.↪→

98 function UseLee(img){
99 img = img.addBands(RefinedLee(img.select("VV")))

100 img = img.addBands(RefinedLee(img.select("VH")))
101 .rename("V","H","angle","VV","VH")
102 return ee.Image(img.copyProperties(img)
103 .copyProperties({source: img, properties: ["system:time_start"]}))
104 }
105

106

107

108 ///////////////////////////////////////////////////////////////////
109 /////// VARIABLES
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110 ///////////////////////////////////////////////////////////////////
111

112 // Set the date of the investigation
113 var date = "2018-02-16"
114 // Geometry has to be a shapefile imported in the GEE asset
115 var aoi = geometry
116

117

118 // Get Images in ImageCollection
119 var s1 = ee.ImageCollection("COPERNICUS/S1_GRD_FLOAT")
120 .filterBounds(aoi)
121 .filterDate(date, ee.Date(date).advance(1, "day"))
122 // Filter to get images with VV and VH dual polarization.
123 .filterMetadata("transmitterReceiverPolarisation",
124 "equals", ["VV", "VH"])
125 .filterMetadata("resolution_meters", "equals" , 10)
126 .map(function(image){return image.clip(geometry)});
127

128 // See if there are scenes on the given date.
129 print(s1)
130

131 // Mosaic images to one image if there is more then 1 image needed
132 // to see a whole lake. (Only necessary to do for the "Müritz" in this

work)↪→

133 var ms1 = s1.mosaic()
134

135 // Add Ratio to the image
136 ms1 = addRatio(ms1)
137

138 ////////////////////////////////////
139 ////// Clustering //////////
140 ////////////////////////////////////
141

142 // Define region
143 // The region of interest is the lake area.
144 var region = geometry
145

146 // Define bands
147 var bands = ("VV","VH")
148

149 // training region is the full image
150 var training = ms1.select(bands).sample({
151 region: region,
152 scale: 30,
153 numPixels: 10e14});
154

155 // train cluster on image, the first number equals the number
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156 // of produced clusters, the second number is defining the start
157 // using the k-means++ initialization.
158 var clusterer = ee.Clusterer.wekaKMeans(3,1).train(training);
159

160 // cluster the complete image
161 var result = ms1.select(bands).cluster(clusterer);
162

163

164 // Display the clusters.
165 Map.addLayer(result,
166 {min: 0, max: 2, palette:["Red","Green","Navy"]},
167 "clusters");
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B Automatisation code

B.1 Whole process

1 sentinelsat -g Lake_Norway.json -s 20181101 -e 20181105 -d --producttype
GRD↪→

2

3 for %%X in (*.zip) do (gpt GRD_Preprocessing.xml -PFilename="%%X" -t
"D:\%%~nX")↪→

4

5 python CreatingTable.py
6 for /R G:\GRD\NEW %%R in (*.img) do python27 zonalstatistics.py %%R

lakes.shp↪→

7 python TimeSeries.py
8 python27 ReintroduceArcpy.py

The GRD_preprocessing.xml file is already inclueded in Appendix A, thus
it will not be covered here.
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B.2 CreatingTable.py

1 import numpy as np
2 import pandas as pd
3

4 # Set number of rows to the number of lakes in the FID
5 rows = 1
6 abc = np.linspace(0,rows-1,rows)
7

8 # Lake.csv
9 # Create dataframe with FID = index.

10 Lakes = pd.DataFrame(columns=['FID_'], index = abc)
11 Lakes['FID_'] = abc
12 # Save Dataframe
13 pd.DataFrame(Lakes).to_csv("G:\Lakes.csv", index = False)
14

15 # State.csv
16 # Create dataframe with FID = index and empty columns State and Process.
17 State = pd.DataFrame(columns=['FID_','State'], index = abc)
18 State['FID_'] = abc
19 # Save Dataframe
20 pd.DataFrame(State).to_csv("G:\State.csv", index = False)
21

22 # LTM.csv
23 # Create dataframe with only FID = index.
24 LTM = pd.DataFrame(columns=['FID_'], index = abc)
25 LTM['FID_'] = abc
26 # Save Dataframe
27 pd.DataFrame(LTM).to_csv("G:\LTM.csv", index = False)
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B.3 Zonalstatistics.py

1 # Create function for tonalstuts
2 def zonalstats(raster,shape):
3 # Set local variables
4 inData = shape
5 zoneField = "FID"
6 PATH = os.getcwd()
7 # Execute ZonalStatisticsAsTable
8 Zon = ZonalStatisticsAsTable(inData, zoneField,

raster,"Zonalstatistics.dbf", "NODATA", "ALL")↪→

9 # Convert Table to Numpy-Array including the Polygon_ID, the Count
and the SUM↪→

10 Zonal_Stats =
arcpy.da.TableToNumPyArray(Zon,('FID_','Count','Sum'))↪→

11 Outname_Mean=str(raster)[:-23]+str("Zst.txt")
12 np.savetxt(Outname_Mean,Zonal_stats)
13 np.savetxt(str(raster)+str("Zst.txt"),Zonal_stats)
14

15 if __name__ == "__main__":
16 # Import modules
17 import arcpy
18 import numpy as np
19 from arcpy import env
20 from arcpy.sa import *
21 import sys
22 import os
23 # Set variables
24 env.workspace = r"G:\vali\Validation.gdb"
25 os.environ['ESRI_SOFTWARE_CLASS']='Professional'
26 arcpy.CheckOutExtension("Spatial")
27 arcpy.env.overwriteOutput = True
28 raster = sys.argv[1]
29 shape = sys.argv[2]
30 zonalstats(raster)
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B.4 TimeSeries.py

1 import numpy as np
2 import pandas as pd
3 import glob
4 import os
5

6 Path = os.getcwd()
7 txts = glob.glob("*Zst.txt")
8

9 Dates = []
10 for x in txts:
11 if x[0:6] not in Dates:
12 Dates.append(x[0:6])
13

14 for Date in Dates:
15 files = glob.glob(Date+str("*"))
16 for i in range(len(files)):
17 Stats = np.loadtxt(files[i])
18 if Stats.size == 0:
19 print("HEy")
20 continue
21 if Stats.shape == (3,):
22 if i == 0:
23 Values = pd.DataFrame({'FID_':Stats[0],'Count':Stats[1],'S c

um':Stats[2]}, index =
[0])

↪→

↪→

24 for p in range(len(Values)):
25 if Values.iloc[p,2] == 0:
26 Values.iloc[p,1] = 0
27 else:
28 Count = 'Count'+str(i)
29 Sum = 'Sum'+str(i)
30 Values_new = pd.DataFrame({'FID_':Stats[0],Count:Stats[1], c

Sum:Stats[2]}, index =
[0])

↪→

↪→

31 for p in range(len(Values_new)):
32 if Values_new.iloc[p,2] == 0:
33 Values_new.iloc[p,1] = 0
34 Values = pd.merge(Values, Values_new, on = 'FID_',

how='outer')↪→

35 else:
36 if i ==0:
37 Values = pd.DataFrame({'FID_':Stats[:,0],'Count':Stats[:,1 c

],'Sum':Stats[:,2]})↪→

38 for p in range(len(Values)):
39 if Values.iloc[p,2] == 0:
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40 Values.iloc[p,1] = 0
41 else:
42 Count = 'Count'+str(i)
43 Sum = 'Sum'+str(i)
44 Values_new = pd.DataFrame({'FID_':Stats[:,0],Count:Stats[: c

,1],Sum:Stats[:,2]})↪→

45 for p in range(len(Values_new)):
46 if Values_new.iloc[p,2] == 0:
47 Values_new.iloc[p,1] = 0
48 Values = pd.merge(Values, Values_new, on = 'FID_',

how='outer')↪→

49

50 # Sort the dataframe by name
51 Values = Values.reindex(sorted(Values.columns), axis=1)
52

53 # Drop FID and insert it as first column
54 FID = Values['FID_']
55 Values.drop(labels=['FID_'], axis=1,inplace = True)
56 Values.insert(0, 'FID_',FID)
57

58 # Create a new target dataframe for the final values
59 Values_all = pd.DataFrame({'FID_': Values['FID_'], 'Count': np.nan,

'Sum': np.nan, 'Mean': np.nan}, dtype = float)↪→

60

61 for r in range(len(Values_all)):
62 # nbr is the amount of text files for the currently investigated

date↪→

63 nbr = len(files)
64 # Sum up all counts for a lake
65 Values_all.iloc[r,1] = Values.iloc[r,1:(1+nbr)].sum(axis=0)
66 # Sum up all Sums for a lake
67 Values_all.iloc[r,2] = Values.iloc[r,(1+nbr):(1+(2*nbr))].where(Va c

lues.iloc[r,(1+nbr):(1+(2*nbr))]>0).sum(axis=0)↪→

68 # Calculate the mean values by dividing the total sum by the total
count↪→

69 Values_all.iloc[r,3] = Values_all.iloc[r,2]/Values_all.iloc[r,1]
70

71 # Extract the Mean values for this day and the FID columns.
72 DayMean = Values_all[['FID_','Mean']]
73 # Rename the Mean column to add the Date to the column in the lakes.csv
74 DayMean.columns =

['FID_',Date[0:2]+str("-")+Date[2:4]+str("-")+Date[4:7]]↪→

75

76 # Import the Lakes.csv containing the mean-values of the previous days.
77 Lakes = pd.read_csv(Path+r"\\Lakes.csv")
78 # Merge the new value to the Lakes-dataframe
79 Lakes = pd.merge(Lakes, DayMean,on='FID_',how='outer')
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80

81 # Export the Lakes.csv
82 pd.DataFrame(Lakes).to_csv(Path+r"\\Lakes.csv", index = False, na_rep=

-9999)↪→

83

84

85 LTM = pd.DataFrame()
86 State = pd.DataFrame()
87 # Current state:
88 # Lakes dataframe contains all Mean-values up to this day.
89 # if there are more then 10 datapoints, calculate the long-term mean

(LTM)↪→

90 # as a mean of all the values up to this day.
91 if Lakes.shape[1] > 10:
92 # Import the LTM_upd.csv of the previous day.
93 LTM = pd.read_csv(Path+r"\\LTM.csv")
94 # Add a new empty line for the day
95 LTM[Date] = np.nan
96 # Calculate a new LTM for each lake.
97 for p in range(Lakes.shape[0]):
98 LTM.iloc[p,-1] =

Lakes.iloc[p,1:].where(Lakes.iloc[p,1:]>-1000).mean()↪→

99

100 # Export the LTM-csv
101 pd.DataFrame(LTM).to_csv(Path+r"\\LTM.csv", index = False, na_rep=

-9999)↪→

102

103

104 # If the LTM exists import the State.csv
105 if len(LTM) >= 1:
106 State = pd.read_csv(Path+r"\\State.csv")
107

108 # If the current mean of the lake is above 1.4 times the LTM up to
this date↪→

109 # the state is changed to 1.
110 for h in range(Lakes.shape[0]):
111

112 if Lakes.iloc[h,-1] >= 1.4*LTM.iloc[h,-1]:
113 State.iloc[h,1] = 1
114

115 else:
116 State.iloc[h,1] = State.iloc[h,1]
117

118 pd.DataFrame(State).to_csv(Path+r"\\State.csv", index = False,
na_rep= -9999)↪→
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B.5 ReintroduceArcpy.py

1 import numpy as np
2 import arcpy
3 import os
4 import datetime as dt
5 from arcpy import env
6

7 env.workspace = r"G:\GRD_TEst\Final\Test.gdb"
8 os.environ['ESRI_SOFTWARE_CLASS']='Professional'
9 arcpy.CheckOutExtension("Spatial")

10 arcpy.env.overwriteOutput = True
11 Date = "2018-02-055"
12

13 # Load Shapefile and State.csv updated on the day.
14 Shape = r'C:\Users\Felix\Desktop\Lakes.shp'
15 State = np.genfromtxt(r"C:\Users\Felix\Desktop\State.csv", delimiter=',',

names=True, case_sensitive=True)↪→

16

17 mxd = arcpy.mapping.MapDocument(r"C:\Users\Felix\Desktop\Mapping.mxd")
18 # Delete the State field of the shape.
19 arcpy.DeleteField_management(Shape,'State')
20 # Merge the updated state to the shapefile.
21 arcpy.da.ExtendTable(Shape,"FID", State,"FID_")
22 # Export the data as a map in PDF format.
23 Outname = r"C:/Users/Felix/Desktop/"+str(Date)+".pdf"
24 arcpy.mapping.ExportToPDF(mxd,Outname)
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C IGB data

The data for ice coverage of the Müggelsee was provided by Rita Adrian,
Leibniz-insitute for freshwater ecology and freshwater fishery. The data for
the "Großer Stechlinsee" and the "Nehmitzsee" was provided by Peter Casper
who is working at the IGB as well.

Date in [DD/MM/YYYY] Ice cover in %

09/01/2018 25.0

14/01/2018 no measurement

23/01/2018 5.0

30/01/2018 No ice

06/02/2018 100.0

15/02/2018 100.0

22/02/2018 100.0

01/03/2018 100.0

08/03/2018 100.0

23/03/2018 80.0

28/03/2018 1.0

05/04/2018 No ice

04/01/2019 10.0

24/01/2019 100.0

30/01/2019 99.0

18/02/2019 18.0

26/02/2019 No ice

TABLE C.1: Ice coverage on the "Nehmitzsee" for winter
2017/2018 and 2018/2019 provided by the IGB.
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Date in [DD/MM/YYYY] Ice cover in %

09/01/2018 2.0

14/01/2018 2.0

23/01/2018 No ice

30/01/2018 No ice

06/02/2018 28.0

15/02/2018 41.0

22/02/2018 38.0

01/03/2018 42.0

08/03/2018 45.0

23/03/2018 17.0

28/03/2018 1.5

05/04/2018 No ice

28/11/2018 Little ice on shore

24/01/2019 12.0

29/01/2019 1.0

15/02/2019 50.0

18/02/2019 53.0

25/02/2019 30.0

26/02/2019 No ice

TABLE C.2: Ice coverage on the "Großer Stechlinsee" for winter
2017/2018 and 2018/2019 provided by the IGB.
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Date in [DD/MM/YYYY] Ice cover in % Ice thickness in cm

06/02/18 30-50 no measurement

07/02/18 50 no measurement

08/02/18 80 1

09/02/18 ? 2

10/02/18 ? 2

11/02/18 0 no measurement

26/02/18 0 no measurement

27/02/18 <50 no measurement

28/02/18 100 2

01/03/18 100 5

02/03/18 100 9

04/03/18 100 13

05/03/18 100 13

06/03/18 100 12

08/03/18 100 9

13/03/18 80 3

14/03/18 0 no measurement

19/03/18 0 no measurement

20/03/18 ? 1

21/03/18 ? 2

22/03/18 ? 2

23/03/18 ? 1.5

24/03/18 >80 1

25/03/18 <10 no measurement

TABLE C.3: Ice coverage on the "Müggelsee" for winter
2017/2018 provided by the IGB. For some dates there are no

values for the ice cover.
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