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Abstract5

The Upper Indus Basin (UIB), which covers a wide range of climatic and topo-6

graphic settings, provides an ideal venue to explore the relationship between climate7

and topography. While the distribution of snow and glaciers is spatially and temporally8

heterogeneous, there exist regions with similar elevation-snow relationships. In this9

work, we construct elevation-binned snow-cover statistics to analyze 3,415 watersheds10

and 7,357 glaciers in the UIB region. We group both glaciers and watersheds using a11

hierarchical clustering approach and find that (1) watershed clusters mirror large-scale12

moisture transport patterns and (2) are highly dependent on median watershed eleva-13

tion. (3) Glacier clusters are spatially heterogeneous and are less strongly controlled by14

elevation, but rather by local topographic parameters that modify solar insolation. Our15

clustering approach allows us to clearly define self-similar snow-topographic regions.16

Eastern watersheds in the UIB show a steep snow cover-elevation relationship whereas17

watersheds in the central and western UIB have moderately sloped relationships, but18

cluster in distinct groups. We highlight this snow-cover-topographic transition zone19

and argue that these watersheds have different hydrologic responses than other re-20

gions. Our hierarchical clustering approach provides a potential new framework to use21

in defining climatic zones in the cyrosphere based on empirical data.22
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Highlights25

1. Watersheds (24 - 1,410 km2) and glaciers have distinctive elevation-snow cover26

relationships in the UIB.27

2. Elevation-binned snow-cover statistics can be used to group self-similar regions.28

3. Clusters of glaciers and watersheds provide a novel way of defining empirical29

topographic-climatic zones.30
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1 Introduction31

The Upper Indus Basin (UIB) is a key source of water for millions of people across32

India, Pakistan, China, and Afghanistan (Vaughan et al., 2013; W. W. Immerzeel33

et al., 2010; Bolch et al., 2012). Water stored in snow and ice is responsible for34

more than 50% of the downstream yearly discharge in the Indus; seasonal snow-water35

contributions to the water budget are higher for many sub-catchments (Bookhagen &36

Burbank, 2010; W. W. Immerzeel et al., 2010; Tahir et al., 2011; Huss et al., 2017).37

The UIB is also highly dependent on the consistency of snowfall and snowmelt; there38

is a lack of reservoir capacity to buffer seasonal water shortages (Barnett et al., 2005;39

W. Immerzeel & Bierkens, 2012; Smith et al., 2017; Athar et al., 2019), especially as40

regional glaciers shrink (Gardelle et al., 2012; Kapnick et al., 2014; Bookhagen, 2016;41

Treichler et al., 2019; Shean et al., 2020; Farinotti et al., 2020). Changes in high-42

elevation snow and snowmelt will also be felt downstream in natural, agricultural,43

and urban settings (e.g., W. W. Immerzeel et al., 2010; Lutz et al., 2016; Bookhagen,44

2017).45

The significant snow-water resources of the Indus are not evenly distributed –46

there are strong topographic and structural controls on where, when, and how much47

precipitation is deposited as snow and rain (Cannon et al., 2015; Smith & Bookhagen,48

2019). Topography also plays a role in long-term changes in snow-water storage (Smith49

& Bookhagen, 2018, 2020a; Huning & AghaKouchak, 2020), snowmelt (Smith et al.,50

2017; Lund et al., 2019), and regional glacier stability (Kapnick et al., 2014; Treichler51

et al., 2019; Shean et al., 2020; Farinotti et al., 2020; Abdullah et al., 2020); some52

glaciers in the UIB are growing in opposition to general regional trends (Hewitt, 2005;53

Treichler et al., 2019; Bolch et al., 2019; Shean et al., 2020). While the water budget54

of the UIB is increasingly well understood, high-elevation snow and glacier dynamics55

remain uncertain (W. Immerzeel et al., 2015; Bolch et al., 2012) due to a distinct56

lack of in-situ measurements at high elevations. Studies using empirical (Smith &57

Bookhagen, 2018; Kääb et al., 2015; Shean et al., 2020) and modeling (Palazzi et58

al., 2013; Maussion et al., 2014) data have attempted to estimate snow and glacier59

dynamics, but are limited by the low spatial resolutions of key datasets. In particular,60

modeling approaches depend strongly on the spatial resolution of the terrain (e.g.,61

Cannon et al., 2017; Norris et al., 2015, 2020) and climate (Yoon et al., 2019) data62

used to force the models.63

Precise hydro-meteorologic in-situ measurements are difficult to obtain over com-64

plex terrain and often face high uncertainties when they are used to characterize large65

regions (Liu et al., 2018; Pellicciotti et al., 2012; Fowler & Archer, 2006; Baudouin et66

al., 2020). Remotely-sensed data have the advantage of providing spatially extensive67

measurements over long time spans. There remain, however, uncertainties in these68

data as well – in particular, cloud cover limits the utility of optical data in many sea-69

sons, and the spatial resolutions of other climate data remain low (Smith & Bookhagen,70

2018). It is thus important to emphasize that insights obtained from remote-sensing71

data should be validated with further local-scale and in-situ studies.72

Monitoring regional cryospheric trends – via in-situ, modeled, or remotely-sensed73

data – thus often requires gathering sparse data into self-similar groups. In particu-74

lar, the mass balance signatures of single glaciers are typically noisy and uncertain;75

grouping glaciers before regional analysis is essential for removing outliers, extending76

the length of measured time series, and increasing the number of useful observations.77

Previous work and approaches have attempted to group and classify regions of High78

Mountain Asia into distinctive glacio-climatic domains (e.g., Bolch et al., 2019; Shean79

et al., 2020; Scherler et al., 2011; Kääb et al., 2015; Smith et al., 2017), but the com-80

plex topographic and climate setting of the UIB makes defining self-similar regions81

difficult.82
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In this study, we use high-resolution topography (1 arc second Shuttle Radar83

Topographic Mission (SRTM) data (JPL, 2020)) and snow-cover data to examine84

topographic controls on the distribution and character of snow and glaciers in the UIB85

region. Using a consistent binning approach, we first quantify the relationship between86

elevation and snow-cover for a number of watersheds and glaciers; we hypothesize87

that these relationships are diagnostic of climatic and topographic zones. We further88

test whether the elevation-binned data can be leveraged in a hierarchical clustering89

framework to coherently group and aggregate diverse watersheds and glaciers in the90

UIB region.91

1.1 Study Area92

The UIB (area: ∼425,000 km2 (Lutz et al., 2016)) covers a wide range of topo-93

graphic and cryospheric settings from the warmer, low-elevation foreland, across the94

Karakoram and into the dry Tibetan interior (Figure 1). The lower reaches of the Indus95

basin in the northwestern Himalaya are located at the end of the monsoonal conveyor96

belt stretching from the Bay of Bengal to the northwest and receive moderate (<197

m/yr) amounts of monsoonal moisture during the summer season (e.g., Bookhagen &98

Burbank, 2006, 2010; Malik et al., 2016) (cf. Figure 1). In contrast, the UIB and99

adjacent regions are strongly influenced by Westerly Disturbances (e.g., Cannon et al.,100

2015; Dimri et al., 2015) leading to significant snowcover (>80%) and snow-water stor-101

age (>75 mm) at high elevations (e.g., Wulf et al., 2016; Smith & Bookhagen, 2019,102

2020a; Fowler & Archer, 2006; Norris et al., 2015; Bonekamp et al., 2019). The hydro-103

logic budget of the UIB is dominated by snowmelt, but rainfall during the monsoon104

season is an important factor in lower-elevation areas (e.g., Bookhagen & Burbank,105

2010; Smith & Bookhagen, 2018; Tahir et al., 2011; W. W. Immerzeel et al., 2009;106

Huss et al., 2017; Wulf et al., 2016).107

While snow-covered area (SCA) is often used as a first-order proxy of snow-water118

storage, the relationship between SCA and snow-water storage is non-linear (Supple-119

mental Figure 1) and has a complex spatio-temporal pattern. In the more westerly120

reaches of the UIB, SCA and snow-water equivalent (SWE) generally mirror topogra-121

phy – the higher reaches of the UIB have more snow. In the eastern areas, however,122

the drier Tibetan interior has much lower SCA and SWE at similarly high elevations.123

This reflects the topographic shielding of Westerly Disturbances that mostly impact the124

western Pamir and UIB regions (Dimri et al., 2015; Cannon et al., 2015). The major-125

ity of snow-cover and snow-water storage is found in the high north and north-central126

reaches of the UIB (Figure 1). Throughout the UIB, there is a marked disconnect127

between SCA and SWE, where areas with high SWE volumes are not always fully128

snow-covered (Figure 1, Supplemental Figure 1).129

2 Data and Methods130

2.1 Topographic and Glacier Data131

In this study, we rely on the reprocessed NASA SRTM Digital Elevation Model132

(DEM) with a nominal resolution of 1 arc second (∼30 m) for topographic informa-133

tion (JPL, 2020). These data have been shown to be reliable elevation indicators in134

steep terrain (e.g., Purinton & Bookhagen, 2018). To derive watershed units, we first135

hydrologically correct the DEM by filling all pits, then derive flow direction, calculate136

flow accumulation, and extract watersheds with stream orders between 3 and 5 using137

standard GIS approaches (Schwanghart & Scherler, 2014). Our analysis of elevation-138

snow relationships relies on 3,415 fourth-order watersheds with areas between 24 and139

1,410 km2. Using these watersheds, we subset topographic (elevation, slope, aspect)140

and climatic (snow-covered area, normalized-difference snow index (NDSI)) data for141

further analysis. We rely on the RGI v6 (Arendt et al., 2015) for glacier outlines in142
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Figure 1. Topographic and climatic setting of the Upper Indus Basin (UIB). (A) Topography

(SRTM, (JPL, 2020)), with red profile lines displayed in Supplemental Figure 1. (B) RGI V6

(Arendt et al., 2015) data and snow line altitude approximated by median elevation of glacial

outline (e.g., Braithwaite & Raper, 2009; Racoviteanu et al., 2019). Snow line altitudes show

a west-to-east and south-to-north gradient also documented in the SCA and SWE profiles (cf.

Supplemental Figure 1). (C) Annual snow-covered area (SCA) calculated from MODIS (2001-

2020, (Hall et al., 2002)). (D) December-January-February (DJF) average snow-water equivalent

from SSM/I passive microwave data (1987-2016, (Smith & Bookhagen, 2020a; M. Brodzik et

al., 2016)). There are large topographic variations throughout the UIB, with commensurate

differences in snow-cover and snow-water storage.
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117

and around the UIB (Figure 1B), reduced to only those glaciers with areas larger than143

1 km2. We use a subset of 7,357 glaciers (total area: 37,643 km2) in this analysis, of144

which 3,830 (total area: 25,093 km2) fall within the Indus basin. 1,021 of the 3,415145

chosen watersheds contain glaciers larger than 1 km2.146

2.2 Snow Data Preparation147

Recent advances in passive microwave snow-water equivalent (SWE) estima-148

tion provide SWE estimates at ∼3 km spatial resolution (M. J. Brodzik et al., 2012;149

M. Brodzik et al., 2016; Early & Long, 2001; Long & Brodzik, 2016; Chang et al.,150

1987; Smith & Bookhagen, 2020a), which is a drastic improvement upon previous 0.25151

x 0.25◦ estimates of SWE (Smith & Bookhagen, 2016, 2018). While the spatial reso-152

lution of SWE estimates remains too coarse for fine-scale topographic analysis, it can153

be used to put higher resolution data into context (Figure 1).154

In this study, we rely upon two higher-resolution snow-cover datasets: (1) MODIS155

SCA estimates (MOD10A1, 500m, 2001-2020, (Hall et al., 2002)) and (2) the Landsat156

8 archive (2014-2020). MODIS SCA data have been shown to be above 90% accu-157

rate across a range of land cover types (Hall & Riggs, 2007; Parajka et al., 2012),158

and are thus well-suited to the broad delineation of snow-cover across elevations in159

the UIB. MODIS SCA data is converted to long-term means, December-January-160
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February (DJF) means, and June-July-August (JJA) means using Google Earth En-161

gine (Gorelick et al., 2017).162

We also rely on Google Earth Engine to pre-process and cloud mask the Landsat163

8 archive (Gorelick et al., 2017). Using the masked and calibrated Landsat data, we164

calculate the long-term NDSI second percentile – used here as a proxy for persistent165

annual snow-cover – and standard deviation at 30 m spatial resolution. Unfortunately,166

due to the short length of the Landsat 8 time series, we cannot generate reliable167

seasonal NDSI estimates. We instead rely on the SCA estimates from MODIS to168

compare seasonal differences in snow character.169

2.3 Insolation Estimation170

Insolation is a strong driver of local microclimatic variation, which exerts a first-171

order control on cyrospheric processes (e.g., Smith & Bookhagen, 2020b; Olson et al.,172

2019; Cuffey & Paterson, 2010; Dozier, 1980). It can have a particularly large impact173

on glaciers; previous work has found that the main aspect orientation of a glacier174

plays a large role in its mass balance (e.g., Evans, 1977; Evans & Cox, 2005). At high175

elevations, sublimation also plays a role in controlling snow persistence (Rupper & Roe,176

2008) as well as short- and long-wave radiation balances (Bonekamp et al., 2019). In177

our analysis, we calculate the total in-plane irradiance as the sum of the beam (Ibeam),178

sky diffuse (Id), and ground reflected components (Iground): Itot = Ibeam+Id+Iground.179

We follow the method of Klucher (1979) using the pvlib software package (Holmgren180

et al., 2018) to measure the diffuse irradiance from the sky on a tilted surface, where181

we explicitly define surface tilt, surface azimuth angles, and elevation for each DEM182

grid cell. We integrate solar radiation calculations over an entire year with a time step183

of four hours and use the annual average as our insolation estimation for each grid cell.184

From these measurements, we derive by-watershed and by-glacier radiation medians185

using all pixels of a glacier or watershed polygon.186

2.4 Topographic and Climatic Data Analysis187

To explore the relationship between topography, snow-cover, and glaciers in the188

UIB, we use our watershed and glacier polygons to create subsets of topographic189

(elevation, slope, aspect) and climatic (SCA, NDSI) data. We then subdivide each190

environmental and topographic variable into 50 m elevation bins, running from 500 to191

7000 m asl. For each elevation bin, we capture the number of pixels, both annual and192

seasonal averages of SCA, and long-term NDSI minimum (2nd percentile) and vari-193

ability (standard deviation). This processing yields unique elevation-binned statistics194

for each variable, which we use for further analysis (Figure 2).195

2.5 Clustering Approach203

As can be seen in Figure 2, the median elevation or elevation range of each204

watershed is not sufficient to differentiate climatic regions. The elevation-binned snow-205

cover medians, however, can be separated into groups with similar characteristics. In206

this study, we rigorously group these binned statistics using hierarchical clustering207

(Müllner, 2011; Murtagh & Contreras, 2012; Smith et al., 2017; Clubb et al., 2019).208

In short, hierarchical clustering involves partitioning a set of observations into coherent209

groups based on an arbitrary distance measure between all pairs of observations. The210

method is flexible and applicable to a wide range of data types and sizes, with the main211

constraint being that some measure of distance between each pair of measurements212

must be defined.213

Determining the distance between two sets of observations is the first step for214

deriving hierarchical clusters. A wide range of methods are commonly used to deter-215

–6–



manuscript in press at STOTEN: Upper Indus Basin

Figure 2. Elevation-binned medians of key variables. (A, B) Fourth-order watersheds and

(C,D) glacier polygons showing (A,C) hypsometry and (B,D) elevation-snow cover relation-

ships. Colors scale with longitude from west (dark) to east (light). More easterly watersheds

and glaciers generally have steeper snow-cover curves – snow-covered area (SCA) increases

rapidly with elevation. We note that the annual SCA cover of each watershed (B) can be vi-

sually grouped into two areas: (1) a shallow elevation-SCA relationship for western watersheds

and (2) a steep relationship for eastern watersheds.

196

197

198

199

200

201

202

mine those distances (Murtagh & Contreras, 2012; Deza & Deza, 2009); we define the216

distance d between two elevation-binned data medians u and v as217

d =
∑

(|(u− v)|)/n (1)

where n is the number of elevation bins that the two sets of binned medians share.218

We choose to normalize the summed distances to account for partially-overlapping sets219

of binned medians (e.g., watersheds or glaciers that share some, but not all, elevation220

bands). We also remove from our analysis any watersheds that do not have an annual221

average DJF SCA of at least 5% to minimize noise from mostly snow-free catchments.222

Not all watersheds or glaciers in the UIB overlap in elevation; there exists a subset223

of binned medians for which the distance d is undefined (e.g., n = 0). Simply put, it224

is not possible to compute a distance between data sets which share no bases. These225

edge cases cannot simply be removed as outliers – they have well-defined distances226

to other sets of binned medians. They do, however, pose a problem for hierarchical227

clustering, which does not support undefined distances between cluster members.228

We use two different methods to account for the undefined distance problem: (1)235

choose a subset of data that has no undefined distances (e.g., all binned medians pass236

through the same elevation range), and (2) define the distance between non-overlapping237

clusters as the median of all other distances (Figure 3, Supplemental Figure 2). While238

the distance between non-overlapping pairs cannot be directly determined, it can be239

inferred from their relative distances to other data. We choose the median of all other240
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Figure 3. Dendrograms of the two distance calculations explored in this study: (A,C) Only

distances between watersheds with overlapping elevation ranges are calculated and used for clus-

tering. (B,D) For watersheds with no elevation overlap, the median distance of all other distances

is used. Note the distinctive groups of elevation-snow-cover relations that result from both clus-

tering steps. Clusters for both methods defined on elevation-binned median snow-covered area

(SCA) using the watersheds of stream-order 4 (cf. Figure 1).

229

230

231

232

233

234

distances as a reasonable value to characterize those undefined distances. It should be241

noted that the undefined distance problem is less significant for glacier clustering, as242

glaciers are much more strongly confined to a limited elevation range.243

Both of the proposed methods successfully partition the binned medians (cf.244

Figure 2). Regardless of which distance measurement we use, we define a linkage245

matrix from the distances d using Ward’s method (Clubb et al., 2019; Müllner, 2011;246

Murtagh & Contreras, 2012). The cluster dendrograms for both approaches can be247

seen in Figure 3.248

3 Results249

3.1 Snow Cover Clusters250

Clusters of watersheds based on elevation-binned SCA medians show a coherent251

spatial pattern and distinct differences in the shape of the elevation-SCA relationships252

(Figure 4), and are partitioned into pseudo-evenly sized groups (n=194-608). While the253

elevation-binned SCA medians for each cluster overlap, they do not maintain the same254

slope – each cluster represents a different relationship between elevation and snow-255

cover. In the mid-elevations of the central and western UIB, for example, SCA changes256

relatively slowly with elevation (green lines, n=364, Figure 4B). In contrast, those257

clusters in the eastern UIB and through the Kunlun Shan exhibit rapidly changing258

SCA with elevation (red lines, n=608, Figure 4D).259

SCA and NDSI clusters are somewhat controlled by topography – both sets of264

clusters roughly follow the divide seen in hypsometry clusters between foreland, high265

mountain, and internal Tibetan Plateau areas (Supplemental Figure 3), and have a266
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Figure 4. Clusters defined on the relationship between elevation and snow-covered area

(SCA) using the watersheds of stream order four. The elevation-binned SCA medians of each

cluster are distinct, though the binned medians of many clusters overlap. Number of watersheds

in each cluster displayed on each individual chart.

260

261

262

263

similar distribution of cluster sizes. However, the elevation-binned snow-cover medians267

of each cluster remain distinct (Figure 4). The split between wetter and drier parts268

of the Tibetan Plateau region is not as strongly expressed in the simple hypsometry269

clusters (Supplemental Figure 4), but is apparent in both SCA (Figure 4) and NDSI270

(Supplemental Figure 5) clusters.271

3.2 Glacier Clusters272

The clustering approach can be extended to regional glaciers. While SCA pro-273

vides useful context to glacier character, the spatial resolution (500 m) is too coarse for274

many small glaciers. We rely instead on the 2014-2020 second percentile NDSI as the275

basis for our glacier clusters, which serves as a proxy for snow persistence and stability276

at each elevation bin (Figure 5). Glacier clusters based on second percentile NDSI277

are fairly well-distributed into six clusters of roughly even sizes, with the exception of278

cluster 2 (yellow points, n=2965) which is located mainly in the Tibetan interior.279

Hypsometry-based clusters (Supplemental Figure 6) are generally broken into285

two very large clusters defined by the majority of small- to mid-sized glaciers (n=2162,286

3200), with larger glaciers comprising several smaller clusters. NDSI clusters, however,287

are more strongly split by elevation and aspect – those glaciers on opposing sides of a288

major drainage divide are often grouped into different clusters (Figure 5).289

While aspect is a key control on glacier size, shape, and character (Evans, 1977;290

Evans & Cox, 2005), aspect does not seem to play a dominant role in controlling291

glacier clusters in our data. While we identify more glaciers with generally north-east292

aspects than any other direction (Supplemental Figure 7), these glaciers do not group293

into distinct clusters. The lack of clear aspect-based clusters is likely indicative of (1)294

the difficulty in assigning a single aspect value to large glacier areas, and (2) the large295

role of seasonal moisture transport and temperature regimes in controlling glacier size,296
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Figure 5. Clusters defined on the relationship between elevation and normalized-difference

snow index (NDSI) 2nd percentile using the RGI glacier outlines (Arendt et al., 2015). The

elevation-binned NDSI medians of each cluster overlap significantly; however, the slope of the

elevation-NDSI relationship is distinctly different between clusters. Number of glaciers in each

cluster displayed on each individual chart.

280

281

282

283

284

topographic setting, and stability (Fujita, 2008; Kapnick et al., 2014; Shean et al.,297

2020).298

4 Discussion299

It is clear that topography – both elevation and aspect – exerts a first-order300

control on the distribution of snow in the UIB (Figure 1). However, elevation is not301

enough to differentiate functional regions – climate dynamics also play a major role302

in controlling snowfall. The direction, timing, and magnitude of moisture transport303

throughout the region has been shown to strongly influence snow and glacier character304

(e.g., Fujita, 2008; Kapnick et al., 2014). Using our clusters based upon elevation-305

snow relationships, we can (1) explore the factors that lead to cluster formation, and306

(2) examine the relationship between our empirical clusters and the analysis regions307

commonly used to delineate self-similar regions in and around the UIB.308

4.1 Climatic Controls on Watershed Clusters309

When we compare the topographic and environmental setting of the different310

clusters defined by elevation-binned SCA medians, it is clear that watershed median311

elevation plays a dominant role (Figure 6). Some clusters, for example cluster 6 (low312

elevation, pink dots) and cluster 1 (high elevation, red dots) are found in distinct and313

non-overlapping elevation bands. However, many clusters are mixed across similar314

elevations, indicating that differences in SCA across watersheds are a stronger control315

on cluster formation.316

There is a clear split at ∼4500 m where watersheds go from seasonally to per-322

manently snow-covered (Figure 6D). Low- to mid-elevation areas all have significantly323

negative minimum NDSI values, indicating that for at least part of the year they are324
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Figure 6. Median elevation of each watershed is compared to (A) annual insolation, (B) aver-

age December-January-February (DJF) snow-water equivalent (SWE), (C) annual precipitation

(GPM, 2001-2020 (GPM Science Team, 2014)), and (D) annual minimum (2nd percentile) nor-

malized difference snow index (NDSI). Clusters determined from elevation-binned SCA medians.

Dots sized by watershed area. Elevation is a first-order control on cluster formation.

317

318

319

320

321

snow-free. Clusters 2, 3, and 4 span the range between seasonally snow-free (e.g., NDSI325

2nd percentile <0) and permanently snow-covered. These watersheds, however, are not326

necessarily responsible for significant water storage; clusters 1 and 4 store less water327

in snow than the lower-elevation clusters 2 and 3. These watersheds are generally in328

the Tibetan interior (Figure 6C), and receive far less moisture than those watersheds329

on the exterior of the Plateau.330

4.2 Limits to Topographic Controls on Glacier Clusters331

Previous studies have noted the influence of received solar radiation on snow-332

cover (Smith & Bookhagen, 2020b) and glaciers (e.g., Evans, 1977; Evans & Cox,333

2005; Olson et al., 2019; Bonekamp et al., 2019). We find that the majority of glaciers334

in our study region are on average north-facing (Supplemental Figure 7); many large335

glaciers, however, remain south-facing. It is important to note that the bias in glacier336

aspects does not mirror large-scale topography; north- and south-facing watersheds337

are evenly distributed in our study area. East- and west-facing watersheds are less338

frequent due to the regional tectonic setting which encourages the formation of north-339

and south-facing valleys (Supplemental Figure 7).340

As with the watershed clusters, elevation plays a role in controlling the formation341

of glacier clusters. However, the role of elevation in controlling glacier clusters is much342

more subtle; cluster members are well mixed across elevations (Figure 7). Each cluster343

has rather a slightly different size distribution (Figure 7B); cluster 3, for example, has344

the largest elevation ranges, but not necessarily the most areally extensive glaciers.345
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Figure 7. (A) Elevation compared to annual insolation, with dots colored by cluster number

and sized by glacier area. Clusters based on NDSI 2nd percentile (cf. Figure 5). While elevation

plays a role in determining cluster formation, it is not as strong of a control as for the watershed

clusters (cf. Figure 6). (B) Elevation range (solid boxes, left axis) and area (transparent boxes,

right axis) statistics by cluster. Boxes filled between the 25th and 75th percentiles, with thin lines

extending to a maximum of 1.5 times the interquartile range. Outliers shown as individual dots

above the thin lines. Colors match clusters in panel (A). Elevation ranges and areas are similar

across clusters.

346

347

348

349

350

351

352

353

The minimal role of elevation in controlling glacier cluster formation can be354

attributed to a few likely causes. First, glacier clusters are formed over a limited355

elevation range, which naturally minimizes the difference between elevation-binned356

medians. Furthermore, snow character will tend to be less variable in the high-elevation357

zones where glaciers form – especially over glacier accumulation areas. This serves to358

emphasize differences in the ablation zone of glaciers, where snow tends to vary more359

across elevations and seasons. From these factors, we can infer that glacier cluster360

formation is more strongly controlled by topography (e.g., glacier slope and aspect)361

and climate (e.g., temperature and precipitation) than by elevation, which is a proxy362

commonly used to group glaciers. Glacier size and elevation range are also poor proxies363

(Figure 7). Additional high-resolution glacier data distinguishing between snow, ice,364

and debris could provide alternate and useful parameters for a clustering analysis365

(Scherler et al., 2011; Smith & Bookhagen, 2016; Racoviteanu et al., 2019). As many366

glaciers throughout the UIB and the greater High Mountain Asia region have debris-367

covered tongues, further research to constrain the role of these lower-elevation glacier368

regions in cluster formation is essential. A detailed analysis of the role of debris-cover369

is, however, beyond the scope of this study.370

4.3 Towards Empirical Clusters for the Cryosphere371

It is often important to aggregate data over spatial scales, particularly when372

the data are uncertain. Some form of regionalization is common in climate (e.g.,373

Vaughan et al., 2013) and glacier (e.g., Kääb et al., 2015; Bolch et al., 2019; Shean et374

al., 2020) literature. These schemes generally use either (1) regular grids, or (2) semi-375

objective regions based on climate, topography, and rough mountain range delineations376

(Bolch et al., 2019). Our approach does not result in spatially contiguous areas, but377

rather delineates coherent regions from a topographic-climatic perspective. While378
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some similarities between our clusters and previously published regions are apparent,379

there are also distinct differences (Figure 8).380

Figure 8. HiMAP zones (Bolch et al., 2019; Shean et al., 2020) compared to (A) watersheds

of stream order four clustered based on elevation-binned snow-covered area (SCA) (cf. Figure

4), and (B) glacier clusters based on the elevation- normalized-difference snow-index (NDSI)

relationship (cf. Figure 5). Rough spatial zones do a poor job of grouping self-similar glaciers.

381

382

383

384

Watershed clusters are relatively spatially coherent and generally represent large-385

scale climatic-topographic zones (Figure 8A). These zones could be useful for future386

studies as coherent analysis regions based on a defined climatic-topographic gradient387

with self-similar behavior. It is important to note that within each major watershed388

(e.g., the UIB) there are multiple watershed clusters. As each cluster has a unique389

elevation-snow relationship, their snow-water storage regimes will differ under current390

and future climate scenarios. These differences have implications for the timing and391

volume of snow-water storage and snowmelt in major watersheds across the region.392

Glacier clusters are much more spatially heterogeneous than watershed clusters,393

and do not smoothly conform to glacier regions delineated in previous work, which394

generally uses elevation, climate, and spatially coherent mountain ranges to analyze395

glacier regions (e.g. Scherler et al., 2011; Kääb et al., 2015; Bolch et al., 2019; Shean396

et al., 2020). This is unsurprising given the strong role of aspect (Evans & Cox, 2005)397

and precipitation seasonality (Fujita, 2008) in controlling glacier mass balance. There398

remain, however, some similarities between our clusters and the glacier regions of Bolch399

et al. (2019). In particular, glacier cluster 4 is largely confined to the Western Kunlun400
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Shan and Tibet interior. The Karakoram region is, however, fairly evenly split between401

all six clusters defined in this study, indicating that aggregated glacier statistics in this402

area may be more uncertain than in more homogeneous regions.403

5 Conclusion404

The distribution of snow and glaciers in the UIB is spatially heterogeneous and405

highly dependent on regional precipitation patterns and topography; elevation-binned406

medians of snow-cover are also strongly influenced by latitude, with western areas407

having relatively shallow elevation-snow relationships, and eastern areas having steep408

elevation-snow relationships. Based on high-resolution topography (SRTM 1-arcsec)409

and snow-cover data from MODIS and Landsat, we propose a novel method of delin-410

eating climatic-topographic zones using a hierarchical clustering approach. We find411

that both watersheds and glaciers can be clustered into self-similar groups based on412

the empirical relationship between snow-cover and elevation. Watershed clusters are413

strongly influenced by median watershed elevation; glacier clusters are less so, and414

reflect stronger climatic and insolation-derived control on cluster formation. We em-415

phasize that the topo-climatic clusters that we derive are different from those based416

solely on topography – the spatial distribution of snow-cover plays a large role in417

cluster formation, particularly for glaciers. We propose that clustering glaciers and418

watersheds using empirical data could provide a novel way of aggregating data in the419

complex environment of the UIB. Analyses based on empirical clusters could help re-420

duce the errors propagated from uncertain in-situ, remotely sensed, and modeled data421

into regional hydrologic and climate analyses.422
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