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In urban areas, leaf area index (LAI) is a key ecosystem structural attributewith implications for energy andwater
balance, gas exchange, and anthropogenic energy use. In this study, we estimated LAI spatially using airborne
lidar in downtown Santa Barbara, California, USA. We implemented two different modeling approaches. First,
we directly estimated effective LAI (LAIe) using scan angle- and clump-corrected lidar laser penetration metrics
(LPM). Second, we adapted existing allometric equations to estimate crown structural metrics including tree
height and crown base height using lidar. The latter approach allowed for LAI estimates at the individual tree-
crown scale. The LPM method, at both high and decimated point densities, resulted in good linear agreement
with estimates from ground-based hemispherical photography (r2 = 0.82, y = 0.99x) using a model that
assumed a spherical leaf angle distribution. Within individual tree crown segments, the lidar estimates of
crown structure closely paralleled field measurements (e.g., r2 = 0.87 for crown length). LAI estimates based
on the lidar crown measurements corresponded well with estimates from field measurements (r2 = 0.84,
y = 0.97x + 0.10). Consistency of the LPM and allometric lidar methods was also strong at 71 validation plots
(r2 = 0.88) and at 450 additional sample locations across the entire study area (r2 = 0.72). This level of corre-
spondence exceeded that of the canopy hemispherical photography and allometric, ground-based estimates
(r2 = 0.53). The first-order alignment of these two disparate methods may indicate that the error bounds for
mapping LAI in cities are small enough to pursue large scale, spatially explicit estimation.

© 2015 Elsevier Inc. All rights reserved.
1. Introduction

Urban trees provide a broad array of ecosystem services that are
governed by tree species, canopy structure, and locational context
(Escobedo & Nowak, 2009; Manning, 2008; McCarthy & Pataki, 2010;
McPherson, Simpson, Xiao, & Wu, 2011; Simpson, 2002; Urban, 1992).
Leaf Area Index (LAI), commonly defined as one half of the total green
leaf area per unit groundarea (Chen&Black, 1992), is a critical structural
attribute that has implications for urban energy balance, gas exchange,
hydrological throughput, and anthropogenic energy use. It is an eco-
physiological measure of leaf surface available for photosynthesis and
transpiration (Chen, Rich, Gower, Norman, & Plummer, 1997). In addi-
tion, dry depositional uptake and intercellular suspension of air pollut-
ants such as O3, NO2, SO2, CO, and PMx is partly mediated by effective
leaf surface area (Baldocchi, Hicks, & Camara, 1987; Hirabayashi, Kroll,
& Nowak, 2011). In urban areas, this process has been related to spatial
variation in air pollution reduction (e.g.,Escobedo & Nowak, 2009).
Increased canopy leaf area, especially over paved surfaces, delays
stormwater peak flow through interception of precipitation (Xiao &
o).
McPherson, 2002). Higher urban vegetation fractional cover (Lu &
Weng, 2006; Myint, Brazel, Okin, & Buyantuyev, 2010) and higher LAI
(Georgi & Zafiriadis, 2006; Hardin & Jensen, 2007; Oke, 1989; Peters &
McFadden, 2010) have been correlated with lowered urban tempera-
tures and reduced summertime building cooling costs. At the same
time, tree cover has also been linked to ecosystem disservices ranging
from pollen allergies to sidewalk damage and the production of litterfall
(Roy, Byrne, & Pickering, 2012).

Many cities have estimated urban LAI using the USDA Forest
Service’s Urban Forest Effects (UFORE) model (Nowak, Crane, et al.,
2008). The UFORE model produces estimates of urban forest structure,
including LAI, and ecosystem function using field measurements of
tree species and crown dimensions acquired on≥200 stratified random
inventory plots across a city (Nowak, Crane, et al., 2008). The resulting
estimates of ecosystem function are used by cities for urban forestman-
agement and planning (e.g., Million Trees LA: McPherson et al., 2011).
However, the data collection process is labor intensive, and the results
are only available at very coarse spatial resolution. Further, the LAI
estimates become increasingly uncertain in regions where the
model’s allometric equations have not been parameterized by locally-
evaluated, species-specific coefficients (Gower, Kucharik, & Norman,
1999; Peper &McPherson, 2003). By contrast, the estimation of effective

http://crossmark.crossref.org/dialog/?doi=10.1016/j.rse.2015.02.025&domain=pdf
http://dx.doi.org/10.1016/j.rse.2015.02.025
mailto:mike.alonzo@geog.ucsb.edu
http://dx.doi.org/10.1016/j.rse.2015.02.025
http://www.sciencedirect.com/science/journal/00344257
www.elsevier.com/locate/rse


142 M. Alonzo et al. / Remote Sensing of Environment 162 (2015) 141–153
LAI (LAIe) in an urban area from hemispherical photography (hereafter
“hemiphotos”) may be more robust to the varying mixtures of tree
species than allometric methods. LAIe differs from true LAI in that it
does not account for the non-random distribution of foliage throughout
the canopy and does not differentiate between foliar and woody plant
components (Chen & Black, 1991). However, measurement challenges
such as discontinuous canopy cover, variability in canopy height, oc-
clusion of foliage by buildings and other structures, and difficulty of
accessing private property at timeswhen sky conditions are appropriate
for the method have limited the use of this technique in cities (Jensen,
Hardin, & Hardin, 2012; Jensen et al., 2009; Osmond, 2009; Peper &
McPherson, 2003; Richardson, Moskal, & Kim, 2009). Importantly,
both allometry and hemispherical photography are field-sampling tech-
niques that generate only point estimates of LAI that cannot easily be ex-
tended to a citywide map. Remote sensing data can be used to estimate
andmap urban LAI and LAIe over large areas at fine spatial scales, possi-
bly at significant cost savings compared to field campaigns (Nowak,
Walton, Stevens, Crane, & Hoehn, 2008).

Maps of LAIe in natural forest settings are frequently produced
using laser penetration metrics (LPM) calculated from airborne lidar
(e.g.,Hopkinson et al., 2013; Korhonen, Korpela, Heiskanen, & Maltamo,
2011; Solberg et al., 2009; Zhao & Popescu, 2009). LPMs, which report
the penetration ratios of laser pulses through canopy, are favored in
part due to the theoretical reliance on Beer-Lambert’s law of light atten-
uation that they share with gap fraction calculated from hemiphotos.
However, issues related to multi-scale clumping of foliage, the variable
relationship between sensor scan angle and canopy path length, and
thewide range of possible leaf angle distributions due to species diversi-
ty have largely precluded lidar mapping of LAIe in heterogeneous areas
(Holmgren, Nilsson, & Olsson, 2003; Morsdorf, Frey, Meier, & Itten,
2008; Van Gardingen, Jackson, Hernandez-Daumas, Russell, & Sharp,
1999). Despite these limitations, Richardson et al. (2009) showed that
mapping LAIe was possible in a biodiverse urban park and that the
assumption of a spherical leaf angle distribution may be acceptable.

In this study we sought to improve LAI mapping capabilities in het-
erogeneous urban environments. We used two theoretically distinct
modeling approaches and multiple types of validation evidence. It is
important to acknowledge that indirect, ground-based measurements of
LAI or LAIe are problematic, exhibiting variability and bias with respect
to true LAI and each other (Bréda, 2003; Peper & McPherson, 2003). We
first examined the relationship between lidar estimates of LAIe using a
Beer-Lambert style approach and estimates from hemiphotos acquired
at 71 field plots. Second, we adapted the allometric equations used
in the UFORE model for use with crown dimension measurements
(e.g., height, diameter) taken at the individual tree crown scale (hereafter
“crown scale”) using lidar. The specific objectives of this study were:

1. Map LAIe in a heterogeneous, urban landscape at the field-plot scale
through correlation of LPM derived LAIe and hemiphoto gap fraction
inversion.

2. Introduce methods for mitigating the effects of off-nadir lidar pulse
angles and non-random foliage distribution on estimates of LAIe in
discontinuous canopy.

3. Map LAI of individual trees using automatically delineated crown ob-
jects, lidar-measured crown dimensions, and an allometric approach.

4. Compare plot-aggregated allometric LAI outputs with the plot-level
outputs from the LPM method to characterize the covariation.

We anticipated that the plot-level metrics based on Beer-Lambert’s
lawwould offer a site-transferablemeans to estimate LAIe withminimal
model calibration from field data. This output could be useful for broad
assessment and modeling of urban surface energy balance in terms of
heat, moisture, andmomentum fluxes (Grimmond et al., 2010) Howev-
er, the resultant map resolution will not allow for estimates of urban
tree ecosystem service provision in the manner desired by many cities
(i.e., services that depend on crown location relative to buildings and
impervious surfaces). Crown scale estimates of LAI validated against
UFORE allometry offer a more direct path towards a spatially explicit
urban forest inventory albeit one that internalizes the uncertainties of
the UFORE model.

2. Materials and methods

2.1. Study area and field plots

This study was conducted in downtown Santa Barbara, California
(34.42° N, 119.69° W) (Fig. 1). Santa Barbara is a city of about 90,000
residents, encompassing 51 km2, located on a coastal plain between
the Pacific Ocean to the south and the Santa Ynez mountains to the
north. It has a Mediterranean climate and supports a diverse mix of
native, introduced, and invasive urban forest species. Fractional canopy
cover (fCov) was estimated in 2012 at 25.4% for the entire municipality
of Santa Barbara using high-resolution digital imagery (City of Santa
Barbara Urban Forest Management Plan, 2014, www.santabarbaraca.
gov). Our study area was situated in the most densely built portion
of the city and, according to UFORE estimates in 2012, fCov was
approximately 20%.

In the fall of 2012, we inventoried vegetation within 105 plots,
recording 108 unique species. The most commonly sampled species
were the broadleaf persistent native Quercus agrifolia (Coast live oak)
and the introduced Syagrus romanzoffiana (Queen palm). Each plot
(Fig. 1) had a radius of 11.4 m in accordancewith UFORE data collection
protocols (i-Tree Eco User’s Manual v. 4.1.0, www.itreetools.org).
Species composition and structure in the plots was extremely heteroge-
neous: Thirty-eight plots had LAI values of b1 and 10 plots had values
N3 (mean = 1.39). Average canopy height was also highly variable,
ranging between 2 and 23 meters with significant internal variation
as well. The number of trees per plot ranged between 1 and 57 with a
median stem count of 4 trees. Plot centers were geolocated using differ-
entially corrected GPS and were positionally accurate to 30 cm with
respect to the lidar data. The distance and direction of each stem was
measured from plot center with an Opti-Logic laser range finder and a
compass. Of the 105 sampled plots, 71, with colocated field measure-
ments, hemiphotos, and lidar data were retained for analysis.

2.2. LAIe estimates from hemispherical photography

To characterize the extreme heterogeneity in urban forest gap
fraction, one hemiphoto was acquired at plot center along with four
additional photos 5.5 m from the center in each cardinal direction.
Plots where only one photo site was accessible represented 16% of the
total. While best practice dictates that hemiphotos are acquired under
diffuse light conditions, thiswas not always possible. Southern California
autumn days are frequently cloudless and the high likelihood of a
field plot falling on private property limited our flexibility in acquisition
time. The photoswere taken at 1m above ground using a Nikon Coolpix
5400 digital camera retrofitted by removing the manufacturer’s
infrared-blocking filter and replacing it with a filter that blocked wave-
lengths b590 nm such that it could record red and infrared light. The
modified camera was used because hemiphotos acquired with near in-
frared (NIR) wavelengths can lead tomore efficient and accurate image
binarization of foliage (Chapman, 2007). This advantage is important
in urban settings where hemiphotos frequently contain structures
interspersed with foliage (Osmond, 2009).

At each hemiphoto location, we acquired images at three expo-
sure settings: 1-stop underexposed, automatic exposure, and 1-stop
overexposed. We combined these multiple exposures into a single
high-dynamic range (HDR) image to enhance contrast between foliage
and sky (Jonckheere, Nackaerts, Muys, & Coppin, 2005; Zhang, Chen, &
Miller, 2005) and mitigate pixel saturation caused by direct beam
radiation (Korhonen et al., 2011). HDR processing was completed with
minimal changes to default settings in Dynamic-Photo HDR 5 (v 5.2.0).
Foliage, plant stems, and branches were distinguished from all other
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Fig. 1. Study area located in downtown Santa Barbara, California. Green dots show grid-randomized distribution of 71 field plots. The shaded topographic relief background shows that
most plots are on flat ground but some, in the northeast and southwest are on steep slopes. At right, oblique angle aerial imagery courtesy of Bing Maps showing 4 representative
11.4 m radius plots.
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scene components through an image segmentation rule-set applied to
the hemiphotos using Trimble’s eCognition software (v. 6.4, Munich,
Germany). Multi-resolution segmentation and locally-thresholded
classification allowed us to address variability in scene illumination
and the complex mix of biotic and abiotic scene elements (Jonckheere
et al., 2004). Nevertheless, as these photos were used for validation of
remotely sensed estimates, some manual editing was required.

Gap fractionwas calculated from the binary images at zenith binmid-
points (7°, 23°, 38°, 53°, and 68°) that, for compatibility with previous
research (e.g., Korhonen et al., 2011; Solberg et al., 2009), correspond
with the concentric detector rings of the LAI-2000 Plant CanopyAnalyzer
(Li-Cor, Lincoln, Nebraska, USA). LAIe can be calculated from gap fraction
using a discrete approximation of Miller’s integral (Korhonen et al.,
2011; Miller, 1967):

LAIe ¼ 2Σn
i¼1− ln Pi

� �
cos θið Þwi ð1Þ

where Pi are ring-wise gap fractions as functions of zenith angle (θ)
averaged across all photo sites at a given plot (Ryu, Nilson, et al., 2010)
and wi are weights corresponding to sin(Θ)dΘ of the midpoint angle of
each zenith bin (Solberg, Næsset, Hanssen, & Christiansen, 2006).

2.3. LAI estimates from UFORE allometry

At the full set of 105 plots we identified and measured 612 trees
following standard UFORE protocols. The crown measurements used
by the UFORE model for estimation of leaf area include height of live
top, crown base height, and average crown diameter. The log-linear
allometric equation, initially created for full-crowned, deciduous, open-
grown trees (Nowak, 1996) is:

ln LAð Þ ¼ −4:3309þ 0:2942Lþ 0:7312Dþ 5:7217S−0:0148C þ ϵ ð2Þ

where LA is leaf area, L (crown length) is equal to the height of crown live
top minus crown base height, D is the average crown diameter, S is a
species-specific average shading factor, C is the crown’s outer surface
area represented by: πD(L + D)/2 and ϵ is an error term. Following
back-transformation and correction for logarithmic bias, further adjust-
ments may be made in cases of crowns with dimensions beyond the
limits for which the equations were developed and for crowns that
exhibit leaf loss due to factors such as dieback, defoliation and pruning
(D.J. Nowak, pers. comm., 2014). Plot level LAI estimateswere computed
by summing leaf area for all trees measured on the plot and then divid-
ing by the total plot area of 408 m2.

2.4. Lidar data acquisition and processing

Waveform lidar data were collected in August of 2010 aboard a
helicopter with a front-mounted Riegl Q560 laser scanner (Riegl USA,
Orlando, Florida). The lidar data were georeferenced with two local
differential GPS stations and stored in the UTM coordinate system
(Zone 11 N, NAD83). The waveform was discretized using standard
Riegl processing procedures to an average last-return point density of
22 pointsm−2 across the study areawith additional returns (maximum
of 4) available in tall vegetation. Height values on flat surfaces were
evaluated to be precise to within 2 cm. Nominal scan angles ranged
between 0 and 30° but the front-mounted sensor configuration resulted
in a minimum pulse angle of 10° and amaximum of 30°. In this research
the term pulse angle refers to the three dimensional, angular deviation
from a theoretical pulse traveling perpendicularly to the ground. This
is measured by constructing the 3-D line between a last return and a
first return connected by their shared GPS time (Zhao & Popescu, 2009).

Each of the 71 plots was entirely sampled by at least two lidar flight
lines and thus, inmost cases, bymultiple pulse angle distributions. Pulse
angle was assigned to single echo pulses from multi-return neighbors
in the same flight line or, in the absence of multiple returns, directly
from the nominal scan angle. The point cloud was classified to ground,
building, and vegetation using LAStools (LAStools v111216, http://
lastools.org) with minimal adjustments to default settings and an over-
all classification accuracy, validated via manual image interpretation,
exceeding 97%.

2.5. Plot-level estimates of LAIe from lidar

We extracted 2.5, 5, 10, 11.4, 15, 20, and 25 m radius cylindrical
subsets of the lidar point cloud centered at each hemiphoto site (n =
243) acquired across our set of 71 plots (methods workflow: Fig. 2).
Hemiphotos and lidar pulses do not sample the same canopy (Morsdorf,
Kotz, Meier, Itten, & Allgower, 2006; Richardson et al., 2009). The former
is upward looking with a conical field-of-viewwhile the latter is down-
ward looking and results in a cylindrical extrusion of the field plot
boundary. In an urban setting with highly variable canopy height, the
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Fig. 2. Workflow diagram for both mapping approaches described in detail in the text.
Please refer to Table 1 for full expansion of the acronyms in this figure.

Table 1
Key notation used throughout study.

Notation Explanation

LPM Laser Penetration Metric
LAI Refers to “true” Leaf Area Index or Leaf Area Index from allometry
LAIe Effective Leaf Area Index
LPMfirsts LPM gap fraction formulated only using first returns (all pulses on plot)
LPMlasts LPM gap fraction formulatedwith inclusion of last returns (all pulses on plot)
LPMcan LPM gap fraction for canopy only (only includes pulses intersecting

with canopy)
fCov Plot canopy fractional cover
LdirF Plot-level, direct LAIe using LPMfirsts

LdirL Plot-level, direct LAIe using LPMlasts

LfCov Plot-level LAIe using LPMcan multiplied by fCov (used for clumping
correction)

eplCor Expected path length correction
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ideal angular restriction of hemiphoto view zenith and optimal sizing of
the lidar cylinder radius is not known a priori. Thus, we extracted data at
multiple radii in order to determine, on average, which cylinder size
maximized the correlation between estimated LAIe and the hemiphoto
LAIe estimates that were produced from each of the five aforemen-
tioned zenith angle ranges.

2.5.1. Gap fraction from Laser Penetration Metrics
Accurate gap fraction estimation from LPMs is dependent on canopy

gap size and arrangement, acquisition parameters such as beam footprint
and scan angle, and the specific formulation of the LPM (Hopkinson et al.,
2013; Morsdorf et al., 2008; Zhao & Popescu, 2009). We implemented
three frequency-based LPMs as proxy measures of gap fraction (Table 1).
The first two were calculated using all pulses extracted from a given
plot (hereafter: “direct”method) and are adaptations of an LPM applied
in a natural forest setting by Solberg et al. (2006) and a managed park
setting by Richardson et al. (2009). Prior to correction for clumping
(discussed in the following section), the direct methodwill yield signif-
icant overestimates of gap fraction whenever foliage is clumped among
spatially disaggregated trees. However, this is likely similar to the over-
estimation produced from hemiphoto analysis. We formulated the
first LPM, simply as the inverse of fractional cover, only counting first
returns, as follows:

LPMfirsts ¼ 1−fCov ð3Þ
Where:

fCov ¼ Fc
Fg þ Fc

ð4Þ

In this model description, F denotes first and only returns, the sub-
script g is for ground, and subscript c is for canopy. When referring to
lidarmeasurement fromnear overhead, there is no universally accepted
differentiation between 1− fCov and gap fraction. They may be consid-
ered equivalent (Hopkinson & Chasmer, 2009) or they may be distin-
guished in terms of the size of the gaps in question (Carlson & Ripley,
1997). To increase sensitivity to smaller gaps, gap fraction retaining
last ground returns was calculated as the sum of first and last returns
at ground level (Lg + Fg) divided by first ground, last ground, and first
canopy returns:

LPMlasts ¼
Lg þ Fg

Lg þ Fg þ Fc
ð5Þ

A third LPMwas calculated only in and under canopies as the ratio of
ground last returns to the sum of ground last returns and first canopy
returns:

LPMcan ¼ Lg
Lg þ Fc

ð6Þ

This formulation does not include single returns that have penetrat-
ed through the canopy via larger gaps as these were accounted for in
Eq. (4) for fractional cover. Logarithmic inversion of thedirectmeasures,
LPMfirsts and LPMlasts will result in direct estimates of plot-level LAIe. The
same inversion of LPMcan will result in an estimate only of canopy LAIe.
This result must be rescaled by fCov in order to yield a comparable,
plot-level result. In this study LAIe from LPMcan was only used to correct
the two direct estimates, as well as hemiphoto-estimated LAIe, for plot-
scale clumping. To evaluate whether these metrics may be imple-
mented with more commonly available lidar datasets, each LPM was
additionally calculated for decimated pulse densities of 5 pts m−2 and
2 pts m−2.

2.5.2. Pulse interception simulation for path length and clumping correction
Gap fraction estimates from LPMs will vary as a function of path

length through the canopy. This component of variability is commonly
mitigated through retention only of pulses with near-nadir scan angles
(e.g., Morsdorf et al., 2008) but has also been accounted for using a
cosine correction, which effectively normalizes path length by pulse
angle (e.g., Zhao & Popescu, 2009). Relying on narrow swaths of data
in cities is problematic if we hope to operationalize spatially extensive
LAIe measurements at reasonable cost. However, the application of a
simple cosine correction (e.g., 1/cos(Θ) where Θ = pulse angle) may
be inappropriate in areas of discontinuous canopy and variable crown
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morphology (Holmgren et al., 2003). Pulse angles in this study’s lidar
dataset were never less than 10 degrees off-nadir. Thus, in furtherance
of objective #2, we simulated canopy pulse interception through a
range of pulse angles and crown geometries to develop a more precise
method for correction called expected path length correction (eplCor).
Simulator detail and code are available in the electronic supplementary
materials. Portions of this MATLAB-based (vR2013b, The MathWorks,
Inc.) simulator code were also used for the “on-the-fly” simulation
using the lidar data referenced in the following section.

eplCor is the ratio of the expected pulse path length through the
crown at a given pulse angle and crown geometry compared to the
hypothetical, simulated nadir path length. eplCor is assessed at the can-
opy level by comparing the path lengths only of pulses intersecting the
crown’s alpha hull. Alpha hulls differ from convex hulls in that the
requirement of convexity is relaxed when the user-defined alpha scale
parameter is finite. Use of alpha hulls allows for more precise wrapping
of a set of spatially disaggregated crowns. At the plot level, all plot pulses
are included to account for the fact that, with upright crown geometry,
as pulse angle increases, more pulses will pass through the crown. We
examined the relationship between pulse angle and LAIe for upright,
intermediate, and spreading geometries based, respectively, on 75th,
50th, and 25th percentile height-to-diameter ratios of our 612 field-
measured trees. Results are reported as “simulated LAIe (sLAIe)” and
produced from equations following the form of Eq. (7) for plot-level
estimates and Eq. (9) for canopy-level estimates rescaled by fCov
(see Section 2.5.3).

The extent to which estimates of LAIe will underestimate true LAI
due to clumping is also partially determined by urban forest stand con-
figuration. In an urban setting characterized by isolated trees, clumping
of foliage occurs at the shoot, branch, and plot scales. While the error
from clumping is presumed to be the same for both lidar andhemiphoto
estimates, we believe that tree spacing in our urban study areawill lead
to underestimates that may be too large to ignore. Here, we again used
pulse interception simulation to examine how the distribution of foliage
throughout a plot, from highly clumped (e.g., aggregated in a single,
dense palm) to fully random, drives underestimates of direct LAIe
measures. To accomplish this, we set true plot LAI to values ranging
from 0.11 to 1.67. At each value we varied the radius of a simulated
tree, and thus the foliage density, from 3 m to 15 m. To produce a
clumping ratio we divided simulated LAIe calculated using Eq. (9) by
simulated LAIe calculated using Eq. (7) (See Section 2.5.3). This ratio
presumes that a plot-level estimate of LAIe made by first measuring
only canopy LAIe and then rescaling by fCov will not be impacted by
the spacing / arrangement of the plot’s trees (Ryu, Nilson, et al., 2010).

2.5.3. Estimating LAIe from lidar data
For each cylinder radius, at each hemiphoto site, for each flight

line, LAIe was calculated from lidar data directly at the plot level
using only first returns (LdirF, where the subscript F indicates first
returns) and including last returns (LdirLwhere the subscript L indicates
last returns) as well as indirectly from canopy LAIe multiplied by fCov
(LfCov). Formulations:

LdirF ¼
− ln LPMfirsts

� �

k � eplCor ð7Þ

LdirL ¼
− ln LPMlastsð Þ

k � eplCor ð8Þ

LfCov ¼
− ln LPMcanð Þ

k � eplCor � fCov ð9Þ

where LPMx is the relevant gap fraction generated using the LPM
Eqs. (3), (5) and (6). We set k= 0.5 to correspond with the commonly
reported spherical leaf angle distribution (LAD) for leaves of any size
(Chen et al., 1997). Given the high species diversity in our study area
there was little basis on which to choose any LAD other than spherical.
We also report k as estimated using weighted linear regression and a no-
intercept model to evaluate the deviation from this expected value
(e.g., Solberg et al., 2006). Linear regression weighted by lidar-estimated
LAIe was selected in order to account for increasing error variance at
higher values of LAIe. Coefficients of determination were calculated
based on sums of squared error and total sums of squares for the untrans-
formed data relative to the weighted least squares fit. For the airborne
lidar data, eplCor was estimated using on-the-fly simulation. That is, for
each of the 243 subplots, an alpha hull was generated for canopy returns
and expected path lengths were calculated based onmedian pulse angle,
median pulse azimuth, and crown geometry. The flight line results,
weighted by number of pulses, were averaged back to the full plot
(n = 71) level. Clumping ratios were calculated and multiplied through
LdirF, LdirL and the hemiphoto LAIe results to account for plot-scale
clumping.

2.6. Crown scale estimates of LAI using lidar-measured crown dimensions

Objective #3 of this study was to map LAI at the crown scale using
allometric methods. Note: This study does not use LAIe and LAI inter-
changeably. The latter metric represents an estimate of “true” LAI that
is neither impacted by foliar clumping nor commingling of woody and
leafy plantmaterials. The choice to forgo LPMmethods in favor of allom-
etry formapping LAI at the crown scale iswarranted for several reasons:
1) Currently, allometric estimation using the UFORE model is the most
common means for estimating LAI in US cities; 2) LPMs can only be
used when it is possible to tally the full set of ground-reflected pulses
that have passed through a given tree crown. This is difficult with highly
off-nadir pulse angles where the (X,Y) positions of ground returns are
displaced significantly with respect to the (X,Y) positions of canopy
returns; 3) Evenwithhigh-point density and lowflight altitude, individ-
ual tree crowns with high LAI may not allow passage of any pulses,
resulting in numerical overflow of the gap fraction inversion computa-
tion; 4) Objective #4 of this study was to compare the results of map-
ping methods with distinct theoretical underpinnings.

The following sections describe in detail how we used lidar to esti-
mate the same structural inputs that are used in the UFORE allometric
equation (Eq. 2) and then how we applied the results to all crowns in
our study area (Fig. 2).

2.6.1. Crown segmentation and leaf type classification
The allometric Eq. (2) used in UFORE to estimate leaf area from

crown dimensions also incorporates a species-specific shading factor.
This factor is included to account for the large species-driven variation
in leaf size, shape, and arrangement that may be encountered within
anymeasured crown volume. In this study it was not feasible to develop
coefficients for each species due to limited training data. Instead we
classified each tree to the leaf-type level (i.e., broadleaf, needleleaf,
palm). Segmentation of canopy into individual crowns and leaf-type
classification was undertaken prior to beginning this study. The process
is detailed in Alonzo, Bookhagen, and Roberts (2014). A brief synopsis
follows:

Canopy segmentationmade use of themarker-controlledwatershed
algorithm on a gridded lidar canopy height model in the manner
originally proposed by (Chen, Baldocchi, Gong, & Kelly, 2006). Spectral
data from the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS,
Green et al., 1998) and structural metrics (e.g., height, height-to-width
ratios, porosity) were extracted from each crown and fused. Classifica-
tion of 29 common species was carried out on the fused dataset using
canonical discriminant analysis to 83.4% overall accuracy. Classification
of all crown segments to the leaf-type level was carried out with 93.5%
accuracy. This classification information was used in Section 2.6.3 to
facilitate the formulation of separate leaf area models, one for each
leaf type.
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2.6.2. Measurement of crown dimensions from the lidar point cloud
In this study, tree height and crown base height were estimated

directly from the 3-D lidar point cloud by first finding the vertical mid-
point between the highest and lowest return in a given segment that
was classified as canopy. From the midpoint, a 0.25 m window was
moved vertically up anddown the tree, stoppingwhen the slice contained
fewer than a predetermined minimum number of returns. This method
proved superior to a quantile-based method because of the significant
presence of cultivated shrubbery below the crown (Fig. 3a) and power
lines or branches of neighboring trees above (Fig. 3b). Average crown
diameter was calculated from watershed crown area after abstracting
each segment to its circle of equivalent area. These measurements
served as the raw inputs to Eq. (2).

2.6.3. Model formulation using crown measurements from manually
delineated crowns

As in the UFORE model, total leaf area was estimated as a precursor
to LAI. We trained the lidar model to predict leaf area using 109 manu-
ally delineated crowns with known leaf type and leaf area. We used a
log-log adaption of Eq. (2) due to the lognormal frequency distributions
of each independent variable, the lognormal distribution of leaf area,
and clear non-linear, bivariate relationships between each predictor
and response:

ln LAð Þ ¼ ln b0 þ b1 � Lþ b2 � Dþ b3 � Cð Þ ð10Þ

where LA is leaf area, L is crown length, D is average crown diameter, C
is crown surface area, and bx are empirically determined coefficients.
Coefficient estimation was carried out on both the pooled set of 109
crowns and the sets separated by leaf type usingweighted least squares
regression.

2.6.4. Model application on watershed crowns
The models formulated using manual crowns were applied to all

watershed segments in the study area after estimating the crown di-
mensions for each segment. Following segment-level estimates of leaf
area, LAI was calculated at the field-plot level to allow for accuracy as-
sessment against aggregated UFORE values. To clarify: it is not possible
to validate individual crown results for watershed segments because it
is not known whether a segment contains only a part of one, exactly
one, or more than one tree. Thus, the leaf area estimates for the 1584
watershed crowns that intersected 71 UFORE plots were summed by
plot and divided by the plot area (408 m2) to yield plot-level LAI.

2.6.5. Map making and model intercomparison
A study-area wide map of LAIe was generated at 10 m pixel resolu-

tion using the best performing of the LdirF and LdirLmodels. Finer resolu-
tion was not considered because it has been previously shown in an
Fig. 3. Two example crowns based on airborne lidar data collected during August 2010
with automatically estimated height and crown base height (red lines). Green dots
indicate returns classified as canopy. (a) Presence of understory shrubbery. (b) Crown is
overhung by power lines.
urban setting that, even with high pulse density, pixel sizes of 3 m led
to data gaps due to lack of ground returns (Richardson et al., 2009).
Moreover, given our study’s mean pulse angle (20°) and mean canopy
height (10 m) the horizontal displacement of ground returns rela-
tive to canopy returns was expected to exceed 50% of all pulses if
5m pixels were generated. No such limitation existed for the allometric
outputs which were mapped at the crown scale. The crown scale map
was subsequently gridded to 10mpixels through intersection and reap-
portionment operations in a GIS to allow for spatially explicit compari-
son with the selected LAIe result. We compared the model results for
the 71 study plots and also throughout a spatial subset of the study
area using 450 randomly distributed sample points. Additionally, we
compared all possible pairwise relationships (n = 12 when each
ground and each lidar method is used as an independent and a depen-
dent variable) to establish rough error bounds on LAI mapping in cities.
For purposes of intercomparison, we report root-mean squared error
(RMSE) and slope coefficient values from weighted least squares regres-
sion with inclusion of an intercept term in all cases.
3. Results

3.1. Comparison of ground-based estimates

Hemiphoto LAIe and allometrically determined LAI fromUFORE field
measurements have different theoretical underpinnings. Nevertheless,
there was a significant linear relationship between Hemiphoto LAIe
and UFORE allometric LAI (r2 = 0.53), although the slope of 0.34 indi-
cated that hemiphoto LAIe was generally lower than allometric LAI
(Fig. 4). This relationship and all other linear relationships reported in
this research were significant at the p = 0.001 level.
3.2. Plot fractional cover

Fractional cover was calculated for each plot using Eq. (4) and it was
compared to field estimates made using UFORE protocols. There was a
significant linear relationship between the two estimates of fractional
cover (r2 of 0.85, y = 0.86x − 0.92, data not shown), with lidar esti-
mates generally resulting in 5–10% more fractional cover. The lidar re-
sults may be more accurate than the UFORE measurements because
the latter produce relatively coarse estimates by dividing the sky into
4 quadrants and estimating the canopy cover in each visually.
Fig. 4. The relationship between UFORE allometric LAI from field measurements
and hemiphoto derived LAIe. Grey shading in this and all similar plots indicates the 95%
confidence interval of the regression equation.
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3.3. Correcting for path length and plot-scale clumping using simulation

The expected path length correction method was evaluated in our
simulation environment to determine its robustness with respect to
crown geometry and distribution of foliage (Fig. 5). LAIe was under-
estimated for all crown geometries at both the canopy and plot levels
with underestimation exacerbated by increased pulse angle, particular-
ly for the upright and intermediate crowns. At the canopy level, for
upright crowns, eplCor strongly compensated for the underestimation
at pulse angles N5°. At 30° off nadir, the LAI estimate was corrected
from 1.65 to 2.48. For the intermediate crown, the correction at 30°
raised the LAI estimate from 1.98 to 2.38. Due to minimal change in
pulse-angle dependent path length in the spreading crown, eplCor had
negligible impact. Simulated plot level results based on rescaled canopy
LAIe mimicked the patterns produced in the canopy level results as they
only differ by the scalar, fCov. In the case of the direct, plot-level results
however, the net effect of eplCor (with non-canopy pulses now includ-
ed) was to lower the estimated LAIe by implicitly compensating for
the higher number of pulses making contact with canopy at higher
pulse angles.

Simulation of plot-scale clumping showed that underestimates of
true plot LAI varied as a function of foliage density (the ratio of crown
projection area to plot area) and LAI (Supplementary Material Fig. S1).
Underestimates were most severe when true plot LAI was highest
(1.67) and the foliage density was highest (canopy radius = 3 m, plot
radius = 15 m). In this case, the measured LAI value was only 5% of
Fig. 5. Adjustments to simulated LAIe(sLAIe) using expected path length: (a) Canopy-level
adjustment including only pulses intersecting the alpha hulls. (b) Plot level adjustments
including all plot pulses in eplCor calculation. sLdir uses the “direct”method (Eq. (8)), sLfCov
uses the “canopymethod” (Eq. (9)). Upright, intermediate, and spreading crowns defined
as 75th, 50th, and 25th percentile height-to-diameter ratios of field-measured trees.
true LAI. As foliage becamemore evenly distributed, estimates improved,
following a logarithmic trajectory whose coefficients varied with true
plot LAI. For instance, for a true plot LAI of 0.66, with all canopy clumped
into a tree with a radius of 7 m, measurement yielded an LAI value that
was 45% of true LAI. At a true plot LAI of 0.22with foliage fully distributed
throughout the 15m radius plot, themeasured LAI valuewas 90% of true
LAI.

3.4. Plot LAIe estimates from lidar data

On the assumption that view geometry alignment does not depend
on LPM formulation, LAIe was directly estimated using only LdirL at all
plot radii and all hemiphoto zenith bins with Eq. (8). The coefficient of
determination was maximized for LdirL using the range of hemiphoto
zenith angles from 0 to 45° and a cylinder radius of 10 m (Fig. 6). This
correlation theoretically indicates a mean canopy height between 10
and 20 m, which indeed bounds the mean height of field-measured
canopy: 12 m. This optimal zenith bin and lidar data cylinder radius
was used in all further analyses.

Model performance of LdirF (first returns only) and LdirL (inclusion of
ground last returns)was assessed by simultaneousminimization of bias
and maximization of the coefficient of determination with respect to
hemiphoto LAIe. After multiplication by the clumping ratio, the best
model performance was exhibited by LdirL with a no-intercept linear
relationship of y = 0.99x, r2 = 0.82, and RMSE = 0.41 (Fig. 7). Exami-
nation of LdirF (y = 0.73x, r2 = 0.73, RMSE = 0.40) showed a linear
relationship with hemiphoto LAIe at lower values. At higher hemiphoto
LAIe values, significant overestimates were present. For simplicity, only
LdirL was considered for subsequent analyses. Changes to slope, r2, and
RMSE values after decimation to 5 pts m-2 were each within 1% of the
full point-cloud values reported above. After decimation to 2 pts m−2,
the LdirL slope decreased to 0.98, RMSE increased from 0.41 to 0.42 and
the r2 value decreased from 0.82 to 0.80. LdirF slope decreased from
0.73 to 0.72, RMSE increased from 0.40 to 0.42 and r2 decreased from
0.73 to 0.69.

Canopy-level eplCorwas applied to correct the LfCovmodel, while the
plot-level analog was applied to correct the estimates from LdirL
(Fig. 8).These plot-level corrections resulted in an 8% reduction in bias
and a change in slope from 0.92 to 0.99. The canopy level correction,
after conversion to a comparable plot-level result, resulted in a 1%
increase in bias with a decrease in slope from 0.74 to 0.73. This latter re-
sult is merely presented to show the effect of eplCor. We do not believe
that the hemiphoto dataset offers comparability with LfCov results due to
different sensitivities to clumping. Themean value of the clumping ratio
Fig. 6. Coefficient of determination (r2) matrix for the relationship between LAIe
from hemiphotos and LAIe using lidar and the LdirL model. Theoretical lines of maximum
correlation for 10 m and 20 m canopy height are also displayed.



Fig. 7.Weighted, no-intercept, linear relationships between hemiphoto LAIe and LAIe predicted using model LdirL (a) and LdirF (b). Clump-corrected results shown in blue and uncorrected
result shown in gray. Results only displayed for full point cloud without decimation.
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(LfCov/LdirL) was 1.4 (standard deviation = 0.26), which indicates
similarity to the simulated values of 1.43, 1.42, and 1.49 for the upright,
intermediate, and spreading crowns, respectively.

3.5. LAI estimates using lidar-measured crown dimensions and allometry

There was strong agreement between crown diameter, crown
length, and crown-surface area calculated from lidar and their field-
measured analogs, with r2 values of 0.95, 0.87, and 0.94 respectively
(Fig. 9). Log-log fits by leaf type were established between the lidar
structural measurements and the UFORE measurements:

ln LAbð Þ ¼ ln 1:76þ 0:60Lb þ 2:32Db−0:44Cbð Þ ð11Þ

ln LAcð Þ ¼ ln −5:05−2:06Lc−5:38Dc þ 4:90Ccð Þ ð12Þ

lnðLApÞ ¼ lnð7:02þ 2:11Lp þ 11:09Dp−5:33CpÞ ð13Þ

where the subscripts b, c, and p denote broadleaf, needleleaf, and palm
leaf types respectively. Formulation of separate log models for each
leaf type resulted in an r2 value of 0.87 (RMSE = 0.39) compared to
r2 = 0.78 (RMSE = 0.48) for a combined model.
Fig. 8.Demonstration of expected path length correction (eplCor) at plot and canopy levels. (a)
to cosine correction. (c) Example of alpha hull wrapping a clump of upright palm trees. (d) An
Application of the above models to the set of watershed segments
intersecting our UFORE field plots (nsegs = 1584) resulted in an overall
r2 of 0.84 and a slight overall underestimate (y = 0.97x + 0.10,
RMSE = 0.53) compared to LAI estimated from field data using the
native UFORE model equations (Fig. 10). At the watershed-crown
level, combined model r2 = 0.81 (RMSE = 0.57, data not shown).

3.5.1. Comparing the lidar models and mapping the estimates
There was strong agreement (r2 = 0.86, y = 0.05 + 1.22x, RMSE=

0.59) between the LAIe results from the LdirL model and LAI measured
allometrically using lidar-extracted crown measurements. Allometric
LAI was underestimated slightly by LdirL possibly, in part, because the
latter does not account for shoot/branch scale clumping and because
penetration metrics are prone to saturation at high LAI. All ground-
based and lidar models were related with root-mean squared errors
ranging between 0.39 and 0.93 and slope values between 0.45 and
1.21 (Table 2).

Maps were generated using each of the models and are displayed
here, for the purposes of visual clarity, as spatially corresponding sub-
sets of the full study area (Fig. 11). While produced initially at different
spatial resolutions (10 m pixels for LAIe versus crown scale for lidar
allometry), the broad scale similarities are visually apparent. After
Plot level correction compared to cosine correction. (b) Canopy-level correction compared
alpha hull wrapping a closed canopy of spreading oak trees.



Fig. 9. (a)–(c) Relationship betweenfield-measured crowndimensions and the samemeasurementsmade using airborne lidar on109manually-delineated crowns. (d) Log-logfit of lidar-
predicted leaf area and leaf area estimated from crown measurements in the field.
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resampling the crown-level map to 10 m resolution, we assessed the
patterns of disagreement between the twomethods (Fig. 11c). As antic-
ipated based on plot-level results, the allometric model generally pro-
duced higher estimates. The LdirL model produced higher LAIe values
Fig. 10.Allometric LAI fromfieldmeasurements predicted by allometric LAI from lidar struc-
tural measurements using separate models for each leaf type (Eqs. 11–13). Aggregation of
individual crown estimates to the field plot scale.
mostly under large broadleaf canopies as illustrated in the inset map.
To compare the maps more rigorously, we extracted pixel values from
each 10 mmap at 450 points. Map agreement between the twomodels
yielded a coefficient of determination of 0.72. Interestingly, the bias in
the map was the opposite of the bias in the plot-level comparison
(0.78 instead of 1.22). In the map, at high LAI, LdirL produced higher
values. This may be due to the higher likelihood of 10 m pixels being
under closed, broadleaf canopy compared to the 20 m diameter sample
plots.

4. Discussion

4.1. Mapping LAIe with laser penetration metrics (objective #1)

We found strong agreement between LAIe estimated fromhemiphoto
gap-fraction inversion and LAIe estimated using LPMs, as has been pre-
viously reported for natural forests (Hopkinson & Chasmer, 2009;
Richardson et al., 2009; Solberg et al., 2006, 2009; Zhao & Popescu,
2009). Our best result (r2 = 0.82, y = 0.99x, RMSE= 0.41) comparing
LPM methods to hemiphotos was produced with the LdirL model. We
found that the inclusion of ground last returns (LPMlasts) in our LPM for-
mulation was necessary to retain model sensitivity at LAIe N2 (Fig. 7a).
This was due to the fact that, at LAI N2, LPMfirsts was insensitive to
change in gap fraction because the beam footprint was larger than the
typical gap size (Lovell, Jupp, Culvenor, & Coops, 2003; Solberg et al.,
2009). For low canopy cover plots either metric is likely sufficient
because LAIe is largely governed by fractional cover. In regions of partial
vegetation cover specifying LAI may be redundant if fractional cover is



Table 2
Weighted Least Squares root mean squared error (bold) and slope coefficients (in parentheses) for all combinations of field and lidar-estimated LAI or LAIe. For comparability, all table
entries are based onWLS regression with inclusion of an intercept term.

Dependent Variable

UFORE Hemiphoto Lidar LPM Lidar allom.

Independent variable UFORE - 0.42 (0.45) 0.57 (0.53) 0.48 (0.87)
hemiphoto 0.93 (0.95) - 0.39 (0.89) 0.74 (0.94)
lidar LPM 0.86 (0.89) 0.4 (1.10) - 0.59 (1.21)
lidar allm. 0.53 (0.97) 0.56 (0.69) 0.44 (0.71) -
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already known (Carlson & Ripley, 1997). Still, it is unclear whether LdirF
leads to under- or overestimation of LAIe as it is unknown whether we
are more likely to digitize canopy returns where the pulse did not
fully intersect with canopy or ground returns where part of the pulse
did intersect with canopy (Hopkinson & Chasmer, 2009). The addition
Fig. 11. (a)Mapof LAIe using the LdirLmodel at 10mpixel size for downtownSanta Barbara (see
at individual crown scale. (c) The LdirLmap subtracted from the allometric map after the latter
of last returns, beyond allowing for greater sensitivity to smaller gap
sizes, increases the effective pulse density, which raises the likelihood
that under- and overestimates at gap margins will cancel out.

In LfCov only last returns on the ground were accounted for in the
numerator. Thus, in dense canopy, the penetration rate may be zero,
map inset for location). (b)Mapof LAI from lidar extracted structuralmetrics and allometry
was resampled to 10 m resolution. All legends are numbered with the class’ highest value.
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resulting in an LAIe of infinity. This did not occur on our 71 plots because
their 20 m diameter and relatively sparse canopy always allowed for
some ground returns. However, on 73 out of 41,134 (0.2%) of our
10 m grid squares this numerical overflow forced exclusion of the Lfcov
values. While this failure rate was low, it would increase at smaller
pixel sizes and when applying a penetrationmetric to dense, individual
crowns. Canopy density is only one cause of this error: For either indi-
vidual crowns or small pixels, ground returns from non-nadir pulses
will exhibit horizontal displacement with respect to associated canopy
hits. The number of ground returns that should be associated with the
pixel in question, but are actually counted in an adjacent pixel, will
vary as a function of pixel size, canopy height, and pulse angle.

While it was necessary to include last returns in order to maintain
model sensitivity at higher LAIe, sensitivity was not impacted signifi-
cantly through reduction in pulse density. The full point-cloud relation-
ships depicted in Fig. 7a, differed negligibly in terms of r2 and bias from
those generated at 2 pts m−2. The only noteworthy deviation occurred
with 2 ptsm−2 sampling density in plotswith very low fractional cover.
In several of these cases higher pulse density was required in order to
detect the presence of small patches of vegetation. In high cover plots,
the low pulse density was still sufficient, at least at 10 m radius plot
scale, to produce similar ratios of ground returns to all returns. The
fact that this method may be successful at lower pulse densities allows
cities to consider similar analyses with existing lidar datasets.

4.1.1. Correcting for off-nadir pulse angles and clumping (objective #2)
Assessment of LAIe using Beer-Lambert’s law assumes that atten-

uation of light through the canopy is partially a product of its passage
through N statistically independent horizontal layers of canopy
(Jonckheere et al., 2004). When the N layers are sufficiently thin and
foliage is distributed randomly, the probability of light interception in
a given layer follows a Poisson distribution. For measurement of LAIe
from overhead lidar, we assume that this passage follows a near vertical
path from sensor to ground. If, however, the pulse angle deviates signif-
icantly from 0°, we must consider how this change affects the path
length of the pulse through the canopy. All else being equal, an increase
in path length due to sensor positioning relative to a crownwill lead to a
spurious reduction in gap fraction. Given a continuous, uniform extent
of canopy, it is reasonable to assume that path length correction can
be applied in the form of 1/cos(Θ) where Θ is the angular deviation
from nadir.

Our urban study area, however, was characterized by heterogeneous
canopy such that path length was additionally dependent on crown
geometry and pulse azimuth.We found that, at the canopy level, a sim-
ple cosine correction had little relationship with eplCor and, under most
circumstances, prescribed an adjustment that erroneously lowered the
LAIe estimate (Fig. 8b). This effect can be seen clearly with the cluster
of highly upright palms shown in Fig. 8c. At the plot level, however,
the utility of the cosine correction remained largely intact (Fig. 8a). On
plots dominated by spreading crowns (Fig. 8d) the distinction between
plot and canopy-level correction is less pronounced. At the plot level
there is a coherent linear relationship between eplCor and simple cosine
correction (Fig. 8a). Thus, it is not surprising that this use of eplCor only
resulted in a 2% improvement over 1/cos (Θ). The true value of eplCor
will more likely be realized should measurement of LAIe become feasi-
ble at the individual crown scale.

Estimation of true LAI from hemiphotos requires a horizontally
continuous, random distribution of foliage across all view zenith and
azimuth angles as well as the ability to separate woody plant matter
from photosynthetic material (Jonckheere et al., 2004). The same
requirements apply to plot-level estimation using lidar. While
difficult to discern from the literature, there appear to be a number
of studies that utilize hemiphotos under discontinuous canopy
conditions (e.g., Richardson et al., 2009; Solberg et al., 2006; Zhao &
Popescu, 2009). Under these conditions, estimating LAIe is still possible
(and technically valid) but themagnitude of the departure from true LAI
may become extreme due to significant spatial separation among
clumps of foliage. Given the extremely discontinuous canopy in a
semi-arid, urban environment, we attempted to account for clumping
attributable to tree spacing.

We measured clumping as the ratio of LAIe estimated using LfCov to
LdirL and produced an average clump ratio value of 1.4 for our study
area. We multiplied both the hemiphoto LAIe estimates and the LdirL
estimates by the plot-specific clump ratio. This result cannot be validat-
ed directly but we did find increased agreement with allometric results,
which could indicate that the correction for plot-scale clumping
shifts LAIe values somewhat closer to true LAI. It may behoove future
researchers to experiment with ground-based methods that allow
for indirect LAIe estimation of individual trees or coherent canopy
clumps. Methods of this type that have been used in sparse canopy con-
ditions include non-hemispherical digital canopy photography (Pekin &
Macfarlane, 2009; Peper & McPherson, 2003; Ryu, Sonnentag, et al.,
2010) and the LAI-2000 with restrictions placed on the view zenith
and azimuth (Peters & McFadden, 2010).

4.1.2. Leaf angle distribution
Weused a fixed value of k=0.5 for all LAIe models because it repre-

sents the extinction coefficient for the spherical leaf angle distribution
(LAD). In the least squares fit between LdirL and hemiphoto LAIe, our
estimated slope coefficient was 0.99. This equates to a modeled k value
of 0.495, suggesting that in a highly mixed urban forest, an initial k
value of 0.5 is reasonable. This is consistent with Richardson et al.
(2009), who estimated k = 0.485 in a semi-urban park setting with a
mix of broadleaf and needleleaf species. Falster and Westoby (2003)
digitized the LADs in three dimensions of 38 perennial species in
sclerophyll woodland qualitatively similar to the oak/eucalypt as-
semblages common in southern California. They found that each spe-
cies had a unimodal LAD with mean leaf angles ranging from 27°
(planophile) to 74° (erectophile). Across their entire sample, the cross-
species mean leaf angle was 52° which is approximately equidistant
from the expected means for uniform random and spherical LADs.
While 0.5may be an appropriate theoretical value for k inmixed forests,
it must be noted that the value additionally depends on lidar acquisition
parameters such as LPM formulation. Solberg et al. (2009) showed,
using first returns only, that their regression’s slope coefficient (equiva-
lent to 1/k in this context) was stable across Norway spruce develop-
ment classes (1.83–1.98). However, when using both first and last
returns the slope coefficientmean across development classes increased
to 2.47 with a range from 1.83 to 2.69.

4.2. Estimating LAI with lidar-derived structural metrics and allometry
(objective #3)

Our urban study adds to the larger body of work in natural forests
suggesting that lidar is effective for measuring basic crown structural at-
tributes (Fig. 9) such as height (e.g., Andersen, Reutebuch, &McGaughey,
2006; Edson &Wing, 2011) and crown base height (e.g.,Popescu & Zhao,
2008; Reitberger, Schnörr, Krzystek, & Stilla, 2009). This is consistent
with research suggesting laser return height distributions are less sus-
ceptible to increased scan angle than penetration metrics (Holmgren
et al., 2003; Morsdorf et al., 2008). It is likely that metrics such as
crown base height are best assessed with off-nadir data and in an
urban forest characterized by open-grown trees. Allometric model
formulationwas improved by the incorporation of leaf type information
(from r2 = 0.78 and RMSE = 0.48 to r2 = 0.87 and RMSE = 0.39).
However, the model, when applied to the watershed segments im-
proved by a smaller margin with this increased specificity (r2 = 0.81
and RMSE=0.57 to r2=0.84 and RMSE=0.53). This is possibly attrib-
utable to inaccuracies in the leaf-type classification of the watershed
segments. Improvement was also likely limited due to aggregation of
the results to the UFORE-plot level for validation purposes.
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Implementation of the crown-scale allometric method produces
fine-spatial scale results that are useful for calculation of urban forest
ecosystem services such as building energy-use reduction and
stormwater runoffmitigation. However, a key limitation of thismethod,
and a large source of uncertainty, is that shading coefficients have been
directly estimated only for a small number of species and regions.While
this coefficient is not included in Eqs. (11)–(13), it is introduced implic-
itly when training the model against UFORE results. Of the 108 species
sampled in the field, species-specific coefficients were only available
for 17, and those coefficients were not likely estimated in Southern
California. The remaining species were assigned coefficients corre-
sponding to other trees of the same genus or leaf type. We expect the
empirical scaling coefficients would need to be determined for other re-
gions and forest types in order to obtain a similar degree of accuracy.
Further error may have been introduced to the models generated in
this study because they do not account for variation in tree condition
or crown transparency. Future gains could likely be made by combining
structural measurement of crown dimensions with a lidar penetration
metric correlated with crown porosity.

4.3. Comparison of models and maps (objective #4)

In this study wemade field measurements of LAI using crown struc-
tural measurements plus allometry and LAIe using gap fraction inver-
sion of hemispherical photos. We developed lidar models that roughly
mimicked each method and then validated each model against its
field analog. The final objective of this study was to compare the results
from each method (Table 2). We did this to estimate the error bounds
on urban LAI estimates. This is not a statistically-based error bound
and caution must be taken in comparing LAI and LAIe. Nevertheless,
we believe that the first-order similarity of these results indicates po-
tential for wider application of lidar remote sensing for mapping
urban LAI. Notably, it was the comparison of the two ground-based
methods, which resulted in the weakest relationship in terms of RMSE
and bias.

The maps (Fig. 11) illustrate the broad similarities between the
methods but also highlight the key difference in spatial scale of the out-
put. In theory, the LPM map can be generated at smaller pixel sizes.
However, as pixel size decreases, the number of pixels with infinite
LAIe due to numerical overflow and the percentage of ground points ac-
tually associated with neighboring pixels will increase. Richardson et al.
(2009) found that with their lidar point density and LPM formulation,
they could produce an LAI map at 14 m but not at 3 m, due to the lack
of ground returns in many canopy-filled pixels. These issues make the
prospect of mapping individual tree LAIe using penetration metrics
difficult at the present time.

The patterns of map disagreement (Fig. 11c) clearly reflect the
differences in model formulation and may shed light on which model
is most appropriate for a particular application. Where canopy cover is
low and clumped in isolated trees (see Fig. 11c inset) the allometric
method may be better suited to capture the fine scale variability in
LAI. In this scenario a pixel-level inversion of an LPM would be unduly
influenced by extremely high gap fraction due to small crown size and
clumped foliage. On the other hand, in areas with higher overall and
relatively homogeneously distributed canopy cover, pixel-level LPMs
are quite sensitive to small changes in leaf surface due to the nature of
the logarithmic inversion. Further, in those areas, segmentation algo-
rithms preceding the allometric approach are less likely to properly
delineate overlapping crowns so the utility of leaf type classification is
diminished.

5. Conclusions

This study demonstrated the potential for mapping Leaf Area Index
(LAI) in a heterogeneous urban environment using two theoretically
distinct methods. We first showed strong agreement between effective
LAI (LAIe) estimated from a laser penetration metric (LPM) and LAIe
measured in the field using hemispherical photography (r2 = 0.82).
In order to quantify the relationship between the two methods, we
developed novel methods to correct for off-nadir pulse angles and
plot-level clumping in a structurally diverse and discontinuous canopy.
While we initially made use of a lidar dataset with very high point
density (22 pts m-2), we found that the results could be reproduced at
decimated point densities down to 2 pts m-2. This indicates that cities
may have success implementing LPM methodology for calculating LAIe
using existing data.

Secondly, we showed that lidar-derived structural metrics such as
height, crown base height, and crown segment area can be used as in-
puts to existing allometric equations for prediction of LAI. This result
was compared against LAI allometrically estimated from field measure-
ments of individual trees and yielded an r2 of 0.84 when formulating
separate models for each leaf type. A key difference in the mapped
outputs between the methods was the spatial resolution. We found
that a map produced using LPMs must have a pixel size large enough
to allow for lidar beampenetration to ground, evenunder dense canopy.
An allometricmaphas no theoretical lower bound on the size of the out-
put crown object. However, maps generated using allometric equations
are subject to an unknown amount of error associated with use of coef-
ficients not developed for the trees or site in question. Thus, while this
work demonstrates that LAI can be mapped at citywide scales, it is still
important that the practitioner be aware of the trade-offs inherent in
each of the methods. The ability to map LAI across large urban areas
offers new potential to constrain estimates fromhydrological and atmo-
spheric models and better understand the spatial distribution of urban
ecosystem services at increasingly fine scale.
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