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Hyperspectral and Lidar Intensity Data Fusion:
A Framework for the Rigorous Correction

of Illumination, Anisotropic Effects,
and Cross Calibration

Maximilian Brell, Karl Segl, Luis Guanter, and Bodo Bookhagen

Abstract— The fusion of hyperspectral imaging (HSI) sensor
and airborne lidar scanner (ALS) data provides promising
potential for applications in environmental sciences. Standard
fusion approaches use reflectance information from the HSI and
distance measurements from the ALS to increase data dimen-
sionality and geometric accuracy. However, the potential for
data fusion based on the respective intensity information of
the complementary active and passive sensor systems is high
and not yet fully exploited. Here, an approach for the rigorous
illumination correction of HSI data, based on the radiometric
cross-calibrated return intensity information of ALS data, is pre-
sented. The cross calibration utilizes a ray tracing-based fusion of
both sensor measurements by intersecting their particular beam
shapes. The developed method is capable of compensating for
the drawbacks of passive HSI systems, such as cast and cloud
shadowing effects, illumination changes over time, across track
illumination, and partly anisotropy effects. During processing,
spatial and temporal differences in illumination patterns are
detected and corrected over the entire HSI wavelength domain.
The improvement in the classification accuracy of urban and
vegetation surfaces demonstrates the benefit and potential of the
proposed HSI illumination correction. The presented approach
is the first step toward the rigorous in-flight fusion of passive
and active system characteristics, enabling new capabilities for a
variety of applications.

Index Terms— Airborne laser scanning (ALS), deshadowing,
imaging spectroscopy, in-flight, mosaicking, pixel-level fusion,
preprocessing, radiometric alignment, ray tracing, sensor align-
ment, sensor fusion.

I. INTRODUCTION

DATA fusion is a promising approach for producing
remote sensing data sets with improved quality and

dimensionality. The combination of data from airborne hyper-
spectral imaging (HSI) sensors and airborne lidar scan-
ners (ALSs) has been previously addressed in [1]–[8]. The
particular focus is their complementary sensor characteristics,
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yielding increased data dimensionality and improved classifi-
cation. The combination of the high spectral resolution of the
HSI and the structural information provided by the ALS can
yield more complete and improved surface characteristics for
a wide range of applications.

Fusion processes are complex, and there are different meth-
ods and levels of details to achieve data-type combinations. All
approaches rely on an accurate geometric coalignment of both
data sources [9]. In general, fusion methods are categorized
as either physical or empirical approaches [10]. Physical
approaches aim to combine both sensors on a raw data level.
Their focus is a parametric representation of particular rigor-
ous sensor models, as well as external conditions. In contrast,
empirical approaches combine both data sets based on inherent
observable information, without the need for supplementary
information. Most approaches, whether physical or empirical,
focus on the enhancement of information content by adding
the surface elevation information, ALS point classification, and
spatial-statistic information as additional dimensions. In addi-
tion, physical approaches consider exclusively structural and
geometric information [11], [12]. However, ALS systems are
not limited to this specific information content. Similar to
HSI systems, they also provide intensity information, but
usually only for a single ALS wavelength. In contrast, the
intensity information is acquired actively and is unfortu-
nately not internally calibrated. Due to the different sensor
characteristics, the combination of intensity information is
challenging and has often not been taken into account. Several
recent studies [13]–[15] systematically compare data from
both intensity information sources and note both opportunities
and challenges for the adaptation of both sensor responses
for heterogeneous surfaces. An overview of the benefits
of using the LAS intensity information is given in [16].
Nevertheless, the full use of data from both imaging sensors
requires some type of radiometric cross calibration. A cross
calibration between HSI and ALS creates a consistent relative
radiometric calibration scale, in which the ALS intensities
are converted to physical units through comparison with the
calibrated HSI data. This process ensures and enhances the
temporal, spatial, and spectral comparison of two different
sensor systems and is, in addition to the geometric alignment,
one of the essential steps for comprehensive data fusion.

The purpose of this sensor fusion is to compensate for solar
illumination and atmospheric conditions, as well as directional
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TABLE I

NOTATION USED FOR RELEVANT RADIATIVE TRANSFER PARAMETERS

and shadow effects, to derive improved and realistic at-surface
reflectance. This is achieved by the rigorous radiometric cal-
ibration of the ALS intensity data with the HSI data and the
subsequent correction of the amount of direct solar radiation
within the atmospheric correction of the HSI data. We have
designed and implemented new software for efficient HSI and
ALS fusion, with special focus on the radiometric calibra-
tion of ALS intensity data and HSI illumination correction.
Detailed descriptions of the basics, methodology, results, and
discussion are provided in this paper.

II. BACKGROUND

A. Radiative Transfer Characteristics

The two sensors have different radiation transfer paths, indi-
vidual spatial sampling, and sensor characteristics. Therefore,
the alignment of different sensor characteristics on a raw level
requires a physical radiative transfer-based cross calibration.
Fig. 1, in combination with Table I, provides an overview of
the different radiative transfer paths and interactions with the
exposed surfaces of the two sensor systems.

The atmospheric conditions influencing the measured sig-
nals are not the same due to their different atmospheric
transfer paths (see Fig. 1). Thus, atmospheric conditions
(e.g., cirrus and clouds) above the flight level influence
only the HSI transfer path. In addition to cloud shadowing,
HSI radiances are influenced by cast shadows, introducing
a continuous shadow field exclusively illuminated by diffuse
radiation (Edif ). Compared with direct irradiation, diffuse
radiation caused by scattering is not a discrete status and is
strongly spectrally variable and dependent. For example, the
blue parts of the spectrum are scattered more strongly, and
they are thus represented significantly more strongly in the
cast shadow [17]. However, lidar intensities are not influenced
by the cast shadow due to their active character. This enables
active cast shadow detection and correction with a physical
approach based on the overlapping wavelength domain and the
proportional assignment to the remaining wavelength range of
the HSI sensor system.

In general, airborne spectroscopy attempts to identify the
true reflectance or absorption property of a surface object at the

Fig. 1. Conceptualization of the radiative transfer paths of ALS and HSI
sensors. See Table I for notification and symbol explanations.

bottom of the atmosphere (BOA). However, the electromag-
netic intensity (LHSI) measured by HSI sensors is influenced
by the solar illumination [terrestrial solar irradiance (E0) and
solar zenith angles (�s)], its path through the atmosphere
(atmospheric transmittance τs) starting at the top of the
atmosphere (TOA), its incidence angle from the object (βsol),
its path back through the atmosphere (τatm) to the sensor at
flight level, and the resulting path radiance (L P ) (Fig. 1). The
HSI BOA surface reflectance (ρHSI) of a Lambertian surface
can be modeled as

ρHSI = πd2(LHSI − L P)

τatm(Edir + Edif)
. (1)

The different terms in (1) are listed in Table I. The diffuse
radiation (Edif ) also includes spherical atmospheric albedo
reflected from the surface toward the sensor and adjacency
radiation (Eadj). The direct radiation (Edir) can be calcu-
lated by

Edir = E0τs cos �s . (2)

In addition, surface roughness and anisotropic object proper-
ties are also relevant for the radiative transfer.

Without geometric and morphometric information of the
surface object, HSI data can be corrected only to Lambertian-
equivalent reflectance, where directional effects and shadows
are not taken into account.

Alternately, a large advantage of ALS data is that the
surface normal (n) of an object surface can be calculated
by the analysis of neighboring point measurements, enabling
the reconstruction of the incidence angle of the laser pulse.
This circumstance can also be exploited within the radiometric
calibration of ALS intensity data. Several studies devote
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themselves to the absolute radiometric calibration of ALS
data [18]–[20], and a review of lidar radiometric processing is
given in [21]. Most approaches rely on the basic lidar equation
and substitution of unknown terms with ground-based in situ
reflectance measurements

Pr = Pt D2
r

4π R4β2
t
τsysτatmσ. (3)

In general, the measured backscattered laser intensity is
analogous to HSI systems influenced by sensor parameters,
atmospheric conditions, and surface properties. The backscat-
tered laser pulse (Pr ) is the result of the emitted pulse
intensity (Pt ) and its direction, range (R) or path through the
atmosphere and return, its atmospheric transmittance (τatm),
and the effective target cross section (σ ) considering the
incidence angle (αALS). Sensor-dependent parameters [e.g., the
beam width angle (βt ), receiver aperture size (Dr ), and system
transmittance factor (τsys) describing sensor specific attenua-
tion, such as the transmittance efficiency, and sensitivity of
the detector] and basic sensor specifications (e.g., wavelength,
bit depth, multiple returns/full waveform, an amplifier for low-
reflectivity surfaces, attenuation for near targets, and automatic
gain control) are required. Additional overall influential factors
are solar background radiation and the size, angle of incidence,
roughness, and wetness of the illuminated surface. Usually,
the emitted pulse intensity, some sensor parameters, and the
atmospheric conditions are unknown. Rigorous approaches
assume that these parameters are constant over the entire flight
campaign. Thus, they can be represented by a calibration
constant (Ccal), which can be estimated by in situ reflectance
measurements [12], [19]. Based on the lidar equation (3)
for every return signal, the backscatter coefficient (γi ) can
be calculated. The backscatter coefficient is independent of
range (R) and beam divergence (βt ) because it is normalized
to the laser’s transverse area [18], [19].

III. METHODOLOGY

The proposed approach is the first step toward an in-flight
physically based fusion of airborne radiometric measurement
capabilities by combining an active ALS sensor with a passive
HSI sensor. Most of the influential parameters are wave-
length dependent, and the overlapping wavelength domain
thus defines the comparability of the sensor responses. The
data fusion is performed by intersecting the pointing of a
HSI sensor element, represented by a cone, with the ALS
point cloud. Hence, the complete set of ALS point properties
inside one HSI beam can be accessed and adequately adapted,
considering the full radiometric and structural information.

The complete in-flight radiative transfer-based cross cali-
bration of the ALS and HSI intensity signal can be split into
three principal parts (see Fig. 2):

1) input data acquisition and preprocessing (including the
geometric coalignment of the sensors);

2) cross calibration and BOA reflectance calculation;
3) output data generation.

A. Input Data Generation and Preprocessing

For the purpose of developing the in-flight sensor fusion,
a test data set with a specially adapted measurement setup,

Fig. 2. Overview of the simplified cross-calibration workflow (rectangles
represent data products; processing procedures are represented by rhombs;
yellow outlines indicate steps applied to ALS data only; blue outlines indicate
steps used for HSI data only, gray outlines indicate levels associated with both
datasets; and central fusion steps are outlined in red).

sensor operation, and flight planning was generated. In addi-
tion to the HSI system, consisting of two HySpex sen-
sors (VNIR-1600 and SWIR-320m-e [22], [23]), an ALS
(LMS-Q560 [24], [25]) and an IMU/GPS (AEROcontrol-IId
IMU in combination with a NovAtel OEM4-G2 GPS) for
measuring the position and attitude of the airplane were
integrated inside a Cessna 207 Skywagon. Table II gives an
overview of the HSI and ALS specifications.

Four flight lines were acquired at an altitude of 800 m
above the ground over an airfield with bordering suburban
development in Kamenz, Germany (51.29063°N 14.12107°E).
The acquired suburban objects (buildings, roads, trees, fields,
and moving objects) represent a radiative as well as a mor-
phometrically diverse test site. The achieved ground sampling
distances of approximately 1.2 m for SWIR and 0.6 m for
VNIR, as well as a point density of approximately 5 points/m2

delivered by the ALS in nonoverlapping areas, sufficiently
represent the spectral and morphological surface heterogeneity.
The HSI test data are strongly influenced by cloud shadows
and cast shadows that limit any HSI analysis [Fig. 3(a)].
Accordingly, this test site represents an ideal benchmark to
show the capabilities and limitations regarding the fusion of
active and passive system characteristics.

In addition to the elevation information, ALS range, ampli-
tude, and echo width are provided to meet the requirements of
the proposed method. For state-of-the-art full-waveform ALS
systems, these attributes are easily accessible.

The full-waveform ALS, the IMU/GPS measurement unit,
and the HSI (VNIR and SWIR) provide the input database.
The preprocessing includes the calculation of trajectories
(see rhomb 1 in Fig. 2), the geometric preprocessing of the
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TABLE II

COMPARISON OF RELEVANT SENSOR PARAMETERS

Fig. 3. Overview of the four geocoded flight lines (1–4); HSI footprint
colored in black and ALS footprint colored in blue. (a) HSI SWIR radiance
image (1550 nm). (b) ALS intensity image (1550 nm).

ALS data including filtering of outliers and ALS returns
introduced by atmospheric interactions (see rhomb 2 in Fig. 2),
and the radiometric correction of the HSI data (see rhomb 3
in Fig. 2). In addition, the cross calibration requires a proper
geometric coalignment of the HSI intensity information with
the ALS point cloud. This coalignment of the HSI sensor
data to the ALS data is created with a parametric approach
using the adapted ALS intensity information as a geometric
reference. The applied approach is described in detail in [9]
and also includes a detailed description of the necessary
spectral response adaptation [26], system integration, data
acquisition, and preprocessing. The ray tracing-based approach
delivers a subpixel coalignment in heterogeneous urban areas,
as well as a lookup table for all ALS points that intersect a
particular HSI beam.

B. Cross-Calibration Procedure
As shown in Fig. 2 (rhomb 5), the cross calibration itself is

implemented in four major steps:

1) calculation of incidence, illumination, and viewing

Fig. 4. Detailed workflow of the four cross-calibration steps. Rectangles
represent (a)–(d) input and output data products. Rhombs represent (1)–(8)
applied processing modules.

geometry for both sensors;
2) calculation of HSI BOA reflectance at 1550 nm;
3) radiometric calibration of the ALS sensor;
4) calculation of the transfer factor (Xcross) and HSI BOA

reflectance.

1) Calculation of Incidence, Illumination, and Viewing
Geometry for Both Sensors: The calculation of the incidence,
illumination, and viewing geometry is the first step in the
cross-calibration workflow [see Fig. 4(1)]. The ALS incidence
angles (αALS), solar illumination angles (βsol), and HSI view-
ing angles (�HSI) are essential to characterize the interaction
between the sensors and the sun with the local surface (see
Fig. 1). In general, the calculation of the angles is carried out
by a ray tracing-based intersection of the sensor beams with
the local surface model.

The ALS incidence angle [αALS, Fig. 6(1)] is calculated in
a first step by intersecting each ALS beam with its neigh-
boring ALS beams. The ALS beam is defined by its beam
divergence, the position of the transmitter, and the position
of the surface target. A least squares approach fits a plain
through all points that fall into one ALS beam. For every plain
representing the local underlying surface that is intersected by
an ALS beam, the surface normal is calculated. The angle
between this ALS beam and the surface normal represents the
ALS incidence angle (αLIDAR).

For the calculation of the solar illumination angles (βsol)
[see Fig. 6(2)], the surface intersected by the HSI beams and
their surface normal are calculated with the same procedure
used for the calculation of the ALS incidence angle. The
viewing angles [�HSI; see Fig. 6(3)] between the HSI beams
and the surface normal are calculated, as well as the terrain
slope angle (�T ) and the topographic azimuth angle (ϕT ).
In addition, the solar azimuth (ϕs) and solar zenith angles (�s)
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Fig. 5. Interaction between the canopy, ALS pulses (red lines; returns are
indicated with numbered dots), and HSI beam (blue beam); blue outlined dots
are used to build the reflectivity information representing the corresponding
HSI information; blue dashed lines inside the HSI cone represent the two
return levels integrated into the reflection representation of this HSI cone.

are calculated based on the acquisition date and the position.
By applying all these angles, the solar illumination angle is
given for every HSI beam [27]

βsol = arccos(cos �T cos �s + sin �T sin �s cos(ϕT − ϕs)).

(4)

2) HSI Bottom of Atmosphere Reflectance Calculation
[Fig. 4(3)]: For the radiometric calibration of the ALS, the
HSI BOA reflectance must be known for the overlapping
wavelength domain (1550 nm). Therefore, the TOA HSI
radiance data cube is transformed to BOA reflectance (Fig. 2,
rhomb 5 II). This atmospheric correction is realized with in-
house correction algorithms [26], [28], based on the radiative
transfer code MODTRAN4 [29]. Thereby, the BOA sur-
face reflection (ρHSI) is calculated with the standard formu-
las (1) and (2). Shadows and rough terrain are not considered
in this correction step [Fig. 6(3)]. ρHSI, Edir, and Edif are
provided separately for the overlapping wavelength domain
(1550 nm), to enable the subsequent calculation of Xcross.

3) ALS Radiometric Calibration [Fig. 4(4)]: The calculated
HSI reflectance from the previous processing step is now
used for the calibration of the ALS intensity signal applying
the calibration constant (Ccal) [18]–[21]. Based on the lidar
equation and the use of the backscatter coefficient (λi ) [19],
the surface reflectance ρALS can be directly calculated

ρALS = Ccal
R2 Pr

τatm cos αALS4
. (5)

The constant sensor parameters are combined into one cali-
bration constant (Ccal)

Ccal = 16

Pt D2
r τsys

. (6)

Fig. 6. Geocoded overview of the (a)–(d) input/output data products and
results of the (1)–(7) processing modules using nonconsecutive numeration
corresponding to the detailed workflow diagram (Fig. 4).

To determine the calibration constant (Ccal), we solve (8)
for Ccal

Ccal = ρALSτatm cos αALS4

R2 Pr
. (7)

Several approaches (see [18], [19]) substitute ρALS with
in situ reflectance measurements to determine Ccal. Instead
of an empirical calibration based on the in situ reflectance
measurements of surface targets, our approach aims to create
an in-flight cross calibration with the wavelength overlapping
HSI sensor. The criteria for every HSI beam include that
the calibration surface is a homogeneous target that can be
assumed to be a Lambertian reflector representing stable
radiation conditions and that it is not influenced by shadows.
For the test data, which are strongly influenced by cloud
shadows, an area of interest (AOI) was manually defined that
covers the directly illuminated part of the runway. Within
this AOI, only HSI beams were selected automatically, which
have viewing angles �HSI ≤ 0.5°, intersect at a minimum with
five ALS points, and have incidence angles αALS ≤ 0.5°.

The requirement for substituting ρALS with ρHSI in (7) is
that the spatial response of the ALS sensor must be adapted to
the spatial response of the HSI sensor. Therefore, ALS points
that fulfill the mentioned criteria and intersect with the selected
HSI beams are spatially adapted. The spatial response adap-
tation is described in Section III-BIII-B.4. Therefore, both
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Fig. 7. Overview of one corrected flight line of 1550 nm, with red marked
subsets and profiles used for further accuracy assessment. (a) HSI BOA
reflectance of 1550 nm (no shadow correction). (b) HSI BOA reflectance
of 1550 nm (all corrections applied). (c) Correction factor Xcross calculated
for the atmospheric transformation to all HSI wavelengths.

sensor responses can be regarded as analogous at this point.
This adaptation is created for all HSI beams (NHSI) that
satisfy the mentioned criteria to calculate the mean calibration
constant Ccal

Ccal = 1

NHSI

NHSI∑

j=1

πd2
j (L H S I j − L Pj ) cos αAL S j 4

(Edir j + Edi f j )R2
j Pr j

. (8)

Using Ccal for the radiometric calibration of the ALS inten-
sities within (5) results in cross-calibrated ALS reflectances
[Fig. 4(5) and Fig. 6(6)].

a) Spatial response adaptation of ALS points: To com-
pare both sensor signals, the cross-calibrated intensity signal
of the ALS point cloud has to be adapted spatially, considering
the point spread function (PSF) of the HSI sensor [Fig. 4(6)].
It is created with a ray tracing-based approach intersecting the
HSI cones with the ALS point cloud. The received ALS sig-
nal (Pr ) is weighted relative to its distance to the cone center
with a Gaussian PSF centered along the center axis of the HSI
cone. A detailed description of the spatial response adaptation
is given in [9]. With this method, the spatial response function
is correctly approximated regarding the spatial footprint pro-
jection and orientation. All calculations are realized in SWIR
sensor geometry (Fig. 10) and backprojected to ALS points
and VNIR data. This strategy avoids the resampling of the
HSI data and thus the associated degradations.

Due to the ray tracing-based intersection approach, a filter-
ing and an adaptation of the point cloud are created separately
for every single HSI beam. The discrete return intensities

are filtered based on their elevation variance inside one HSI
beam (Fig. 5). Every time the elevation variation inside an
HSI beam exceeds a threshold, the variance is minimized by
separating the point cloud into two continuous surfaces by
histogram filtering. This approach results in two continuous
surface representations: the ALS points representing higher
regions in the canopy and the bare ground points. Only if
sparse first pulse returns and dense higher order returns are
detected inside one HSI beam, the higher order returns are
also considered in the sensor response adaptation (Fig. 5).

This procedure accounts for the attenuation correction in
the surroundings of dense vegetation where sparse vegetation
splits the ALS energy into multiple returns (Fig. 5). For HSI
beams with dense first pulse returns caused by the canopy
and sparse returns of higher order inside or underneath the
vegetation, the top first pulse returns are used to build a
continuous surface. Only these top first pulses represent the
canopy parts influencing the area integrating the sensor answer
of the HSI system.

4) Calculation of the Transfer Factor Xcross: For the trans-
fer of the cross calibration between the overlapping wave-
length domain of 1550 nm [Fig. 4(7)] and the remaining
wavelength, an additional factor (Xcross) is introduced into (1).
Xcross is intended to represent differences in illumination
between shaded and fully illuminated areas. In fully illu-
minated areas, Edir and Edif are present. In shaded areas,
Edir is absent, and only Edif is present. Thus, Xcross adjusts
the amount of Edir based on the calibrated and adapted ALS
intensity data. Therefore, (1) with the introduced factor Xcross
is solved by substituting ρHSI for 1550 nm with the cross-
calibrated ALS reflectance (ρALS)

Xcross = πd2(LHSI − L P H S I )

Edir ∗ ρALS ∗ τatm
− Edif

Edir
. (9)

The determined factor Xcross [Fig. 6(7)] is then used to
calculate ρHSI for all remaining wavelengths. This results in
corrected HSI reflectance [Fig. 6(d)].

5) Requirements and Assumptions: Considering the
following four requirements and assumptions, the presented
generic method can be applied to the complete flight
campaign, as well as to other system configurations and
characteristics. First, one of the main prerequisites for
the cross calibration is an accurate spectral and geometric
coalignment, which includes the adaptation of the overlapping
wavelength domain considering the central wavelength and
bandwidth. Second, it has to be assumed that both sensor
systems are geometrically and radiometrically stable during
the entire flight campaign. Third, the characteristic of the
laser pulse regarding amplitude, echo width, and shape of
the reflected echo should be known. Thus, the complexity
of the underlying object reflection is fully represented, and a
radiometric correction is also possible for nonhorizontal targets
[19]. Consequently, the detection of return echoes and the
separation into different reflections out of the full-waveform
information can be created with Gaussian decomposition [19],
[25]. Fourth, the approaches for the radiometric calibration
of ALS intensities assume that all surface objects diffusively
reflect according to the Lambertian law. This assumption
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Fig. 8. Along- and across-track transects representing reflectance for 1550 nm
(red uncorrected and blue corrected), x-axis represent the underlying pixel
(1.2 × 1.2 m), (Transect 1) along track intersecting the concrete runway,
(Transect 2) across track intersecting asphalt road, and (Transect 3) along
track intersecting various surface materials.

enables the calculation of diffuse reflectance, which depends
only on the object properties, not on the viewing angle.

IV. RESULTS

The introduced radiometric cross calibration generates an
HSI reflectance data cube with reduced shadowing and illumi-
nation influences. In the following, these results are presented
and evaluated for the test data set, which is strongly influenced
by illumination effects. The chapter is divided into a compar-
ison of the adapted intensity information of the overlapping
wavelength domain of 1550 nm, an investigation of the cor-
rected HSI data cube, and an evaluation of the potentials for
HSI data quality and classification improvements.

A. Comparison Between the Overlapping Wavelength
Domain of 1550 nm

A rough visual comparison between the standard reflectance
results for HSI [Fig. 7(a)] and the reflectance calculated
based on the cross-calibration approach [Fig. 7(b)] for the
wavelength domain of 1550 nm clearly shows the successful
correction of illumination influences in the HSI-ALS fused
data. Despite the complex illumination situations caused by
cloud shadowing, low solar elevation, and heterogeneous
object exposure, the correction appears consistent thanks to
the radiometrically calibrated active ALS signal.

A closer inspection of the reflectance (1550 nm) based on
three transects [marked in Fig. 7(b) with red arrows] confirms
the consistency. Transect 1 (Fig. 8) indicates the impact of
the cross calibration to the reflectance values representing the
concrete runway in the along-track direction of the flight stripe.
Compared with the uncorrected reflectance values (red plot),
the blue plot alternates at a constant level of approximately
30% reflectance. The high frequency contrast between the
pixels is preserved or enhanced due to a higher signal level,
whereas the low frequency contrast introduced by illumination
differences is compensated for. The same is valid for transect 2

Fig. 9. Various scatter plots indicating the relationship between
ALS data and HSI data in the overlapping wavelength domain
of 1550 nm, (a) Relation between original HSI data (x-axis) and
ALS received power (y-axis). (b) Relation between the cross-
calibrated data (x-axis) and uncorrected ALS received power
(y-axis), (c) and (d) Influence of different calibration targets [(c) runway
and (d) grass] and their overall nonlinear relation between original HSI
data (x-axes) and cross-calibrated data (y-axes). The blue reference lines
(x = y) separate the data sets into two parts: black clusters represent pixels
that have expectedly higher values after the cross calibration; red clusters
represent pixels that have smaller values after cross calibration; and the
spatial distributions of the red clusters are shown in the flight stripes on
the right.

at a lower reflectance level of approximately 8%, representing
the across-track influence intersecting a relatively homoge-
neous asphalt road. Additional spikes become apparent due to
moving cars and retroreflective lane markings not represented
equivalently in both sensor responses. Transect 3 extends
in the along-track direction over the complete flight stripe
representing its inherent heterogeneity. This transect confirms
the results of transects 1 and 2.

The two scatter plots in Fig. 9(a) and (b) show the relation
between the received ALS power (Pr ) (y-axis) and reflectance
(x-axis) for the original HSI reflectance [Fig. 9(a)] and cross-
calibrated HSI reflectance [Fig. 9(b)]. The regression lines
(in red) and their equation (y), as well as the Pearson cor-
relation coefficient (R), are presented. Fig. 9(a) depicts highly
uncorrelated information due to the different illumination
conditions and differences in the sensor response. However,
after the cross calibration, a close-to-linear relationship is
observed [Fig. 9(b)]. As expected, the spatial distribution of
the nonlinear values [under the regression line marked in red
Fig. 9(b, right)] has no correlation with solar illumination con-
ditions. The differences between radiometrically uncorrected
ALS intensities and cross-calibrated intensities due to varying
ALS point density and overall surface heterogeneity become
apparent. It highlights the indispensability of the radiometric
calibration of the ALS data.

Scatter plots (C) and (D) represent the relations between
the original HSI (x-axes) and the cross-calibrated (y-axes)
reflectance for two different calibration targets. Plot (C) results
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from the calibration on selected pixels from the runway
and (D) from grassland. Both plots also show that the relation
between ALS and HSI is highly uncorrelated and affected by
noise due to the differences of the respective radiation paths
and the interaction with the surface objects. Red marked clus-
ters separated by the blue reference line (x = y) indicate pixels
with unrealistically smaller values after the cross calibration.
Their spatial distribution is also shown in the flight lines on the
right side. In addition to complex anisotropic surface behavior
(e.g., solar array and sheet-metal roofing), the smaller values
result from a small overestimation of the first HSI reflectance
calculation [Fig. 4(3)] caused by an underestimation of com-
plex diffuse illumination conditions inside small gaps in the
clouds. Fig. 9(c) and (d) indicates that the different reflectance
characteristics of grassland and concrete due to anisotropy and
roughness generate differences in the sensor responses of the
two sensors. It is caused by the fact that the calibration targets
do not strictly fulfill the requirements of a Lambertian surface,
and thus both sensor systems still have a surface-dependent
characteristic difference in their sensor responses. Also Fig.
7(c) representing the correction factor Xcross does not change
only with direct illumination variation. Different anisotropy
and roughness characteristics of the different surfaces are still
apparent in the factor. Nevertheless, it is assumed that the
runway most likely fulfills the Lambertian surface criteria and
serves as the final cross-calibration target for all further results.
This target sensitivity not only highlights the relative character
of the cross calibration but also emphasizes the opportunity to
optimize for different surface characteristics.

B. Corrected HSI Data Cube
The spatial pattern of the derived correction factor (Xcross)

shown in Fig. 7(c) is used to compensate for the unwanted
illumination patterns for the remaining wavelength of the HSI
sensors. The result of this proposed transformation is shown in
Fig. 10(b) in comparison with the uncorrected HSI reflectance
[Fig. 10(a)]. The visual comparison indicates the overall good
performance of the method. The patterns of illumination
differences that are clearly visible in the HSI reflectance data
[Fig. 10(a)] are eliminated without any recognizable artifacts
in the transition zones. This fact is also confirmed by the com-
parison of the selected spectral profiles (Fig. 10, middle). The
first spectral comparison of the grassland surface (1) shows
that the corresponding spectra are nearly identical before and
after the correction. This is due to illumination by direct
and diffuse radiation without the influence of shadows. All
other example spectra are influenced by shadows (red spectra
in 2–5), exhibiting a clear attenuation. They are located in
areas where only diffuse illumination exists, which is not
considered in (9). After the correction, the spectra (blue
spectra in 2–5) indicate that this lack of direct illumination
is compensated for, and the spectra are raised to plausible
reflectance values.

Fig. 11(a) and (b) shows the spatial pattern of the cross-
calibration-induced reflection modification by two difference
images calculated for two different wavelengths 549.3 nm [Fig.
11(a)] and 1651.8 nm [Fig. 11(b)]. Both images demonstrate
the correction of the illumination conditions. However, differ-

Fig. 10. Atmospheric corrected HSI reflectance (backprojected to SWIR
sensor geometry; R = 702 nm, G = 1249 nm, and B = 586 nm). (a) Without
cross calibration (red label). (b) Cross-calibrated corrected data (blue label).
Middle: comparison of uncorrected (a) and corrected (b) reflectance spectra
for (1)–(5) different surface materials influenced by various illumination
conditions.

ent surface objects are also visible in homogeneous illuminated
areas. This can be explained by small illumination and view-
ing differences caused by surface roughness and anisotropic
behavior. Despite the sensor adaptation, these effects, which
influence the sensor responses, are still inherent in the data.

C. HSI Data Quality and Classification Improvements
A detailed visual comparison of subsets 1 and 2 (red boxes

in Fig. 7) is presented in Fig. 12. It is clearly visible that
the illumination influence inherent in the original HSI data
[red border in Fig. 12(a) and (d)] is corrected [blue border
in Fig. 12(b) and (e)] without any visual artifacts in the
transition areas. This circumstance is also confirmed by the
difference images [Fig. 12(c) and (f)] where the transition
between directly illuminated areas and cast shadow areas, as
well as cloud shadow areas, is very smooth and reasonable.
The correction of the solar illumination influence is especially
visible at saddle roofs exposed on one side toward the sun,
and on the other side, only diffuse radiation is present.
In Fig. 12(b), these patterns are entirely compensated for.
Fig. 12(e) indicates that the shadow influencing the canopy
representation of the large tree can also be compensated for.
All of this indicates the potential of the proposed method,
especially for advanced vegetation and canopy studies [4],
[30], [31], as well as for urban mapping [5], [32].

Overall, it is perceptible that the internal contrast inside
homogeneous areas, for example, the asphalt road [Fig. 12(b)]
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Fig. 11. Reflectance difference (� = cross-calibrated reflectance-original
HSI reflectance) between adjacent wavelength with their respective color slices
and histograms for (a) 549.3 and (b) 1651.8 nm. Locations of reflectance
spectra shown in Fig. 10 are marked with black crosses.

or the field [Fig. 12(e)], is enhanced. However, the difference
images [Fig. 12(c) and (f)] indicate relatively homogenous
internal patterns for these regions. These enhancements can
be explained by contrast stretching due to the elimination
of shadow information. Artifacts or structures that are not
visible in the original HSI data are not generated. Thus, the
cross calibration enhances the local contrast, but does not
add inherent ALS speckle to the results. It seems that the
spatial sensor adaptation (Section III-BIII-B.4) successfully
suppresses such artifacts.

One of the benefits of the cross calibration is its inherent
interflight stripe adjustment. It results in a seamless mosaic
[Fig. 13(b)] with a remarkable reflectance match in the over-
lapping pixels [Fig. 13(1)–(4)]. Despite the data acquisition not

Fig. 12. Detailed comparison of the fusion procedure, and all images are
displayed with 1% linear global stretch. (a) Uncorrected HSI reflectance
image (RGB) transition zone between direct illumination and cloud shadow.
(b) Corrected HSI reflectance image (RGB) without any illumination artifacts.
(c) Grayscale difference images [(a) and (b)] indicating areas with less (black)
and strong (white) solar illumination influence; the same for (d)–(f), except
for displaying CIR false color for (d) and (e).

Fig. 13. Spectral comparison between two adjacent and overlapping flight
stripes. (a) Uncorrected HSI reflectance. (b) Corrected HSI reflectance.
(1)–(4) Sample spectra from overlapping pixels (orange and violet = spectra
of left flight strip, and red and blue = spectra of right flight strip).

being perpendicular to the solar principal plane, across-track
illumination gradients are not observed [Fig. 8, transect 2, and
Fig. 13(b)] The modifications caused by the cross calibration
and their spatial, radiometric, and spectral characteristics are
also visible in Fig. 14, where the differences between the
two overlapping adjacent flight stripes are analyzed for two
wavelengths [549.3 nm in Fig. 14(a) and (c) and 1651.8 nm
in Fig. 14(b) and (d)]. The differences for the uncorrected
reflectance [red border in Fig. 14(a) and (b)] show strong
illumination patterns. However, the differences between the
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Fig. 14. Reflectance difference (color slice) between overlap-
ping adjacent flight stripes (gray scale); � = left flight stripe(1)-
right flight stripe (2); histograms indicate the distribution of the
resulting differences; Difference between uncorrected HSI reflectance
(red border) for overlapping (a) 549.3- and (b) 1651.8-nm bands;
Difference between cross-calibrated HSI reflectance (blue border) for over-
lapping (c) 549.3- and (d) 1651.8-nm bands.

cross-calibrated flight stripes [Fig. 14(c) and (d)] do not
exhibit these patterns. The histograms and statistic assessments
indicate a clear tendency toward smaller differences and a
more homogeneous distribution. For the relatively short VNIR
wavelength of 549.3 nm [Fig. 14(a) and (c)], minor reflectance
differences caused by illumination are still perceptible due
to the stronger diffuse scattering of smaller wavelengths.
However, the overall tendency toward smaller differences is
present. Especially for the SWIR wavelength [Fig. 14(b)],
the illumination patterns are eliminated in the cross-corrected
SWIR differences [Fig. 14(d)]. The spatial distribution indi-
cates that only transition areas between surface objects are
causing reflectance differences of ±3.7% standard deviation.
The comparison between the adjacent flight stripes indicates
that across-track illumination gradients are compensated inde-
pendent from shadow influence.

To assess the benefits for application and classification
purposes, a supervised support vector machine (SVM) clas-
sification [33] has been carried out for the original HSI data
[Fig. 15(a)] and the cross-calibrated data [Fig. 15(b)]. For the
cross-calibrated data, the classification results in an overall
accuracy of 98.56% and a kappa coefficient of 0.98. This
contrasts with the overall accuracy of 78.79% and kappa
coefficient of 0.71 for the original HSI data. The corrected
data clearly show a classification improvement. Based on the

Fig. 15. Subsets (in sensor coordinates) of supervised SVM classification
results (seven classes and three iterations) and their corresponding confusion
matrix based on (a) reflectance without cross calibration and (b) cross-
calibrated reflectance.

confusion matrix [Fig. 15(a)], it can be shown that for the
original HSI data, concrete pixels are often falsely classified
as asphalt and vice versa. In addition, grass surfaces are often
misclassified as trees and vice versa. Also remarkable are
the tin roofs, which are often falsely classified as asphalt.
These misclassifications can be explained by a higher spectral
similarity between these classes, especially under shadowed
conditions. After the correction [Fig. 15(b); confusion matrix],
misclassifications are significantly reduced, and the classifica-
tions of concrete, asphalt, trees, grass, and tin roofs especially
profit from the corrections. Additional tests with a spectral
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angle mapper (SAM) classification, usually more robust to
variations of albedo, performed poorer for the corrected data
and then SVM classification performed for the uncorrected
data. The overall poorer SAM classification results for the
uncorrected data also indicate nearly identical problems with
the separation of trees and grass as well as with the separation
of soil, asphalt, and concrete. These classification results
imply that the cross-calibrated reflectance clusters representing
certain surface objects are more separated and have smaller
cluster variability. These are promising results for any type of
more specialized application dealing with vegetation or urban
classifications, where the influence of shadows always hampers
the results.

V. DISCUSSION

The results of the proposed illumination correction of the
HSI data based on the cross calibration with the ALS intensity
data seem promising for all urban and vegetation settings
influenced by cast shadows. In addition, extreme complex
illumination conditions, such as cloud or terrain shadowing,
can be improved. A significant enhancement is indicated com-
pared with the exclusive use of HSI data. The cross calibration
is only a relative calibration; nevertheless, the combination
has the potential to eliminate typically disturbing effects in
passive sensor data. The benefits of compensating for illumi-
nation differences are evident when considering deshadowing,
across-track illumination correction, albedo leveling, and
mosaicking. With the active support, illumination changes over
time beside shadow influences are compensated for. This is
especially beneficial for the interpretation and classification of
data acquired during long-lasting flight campaigns.

However, some requirements and assumptions considering
the sensor systems, characteristics, and flight parameters have
to be fulfilled to generate such results. The ray tracing-based
approach is necessary to compensate for the influence of the
different sensor responses, especially concerning tree canopies.
Additional work must be performed to fulfill the requirements
for an operational application in HSI data preprocessing.
The overall radiative interaction between the sensors and
various surface objects considering anisotropic behavior and
roughness differences must be addressed. In addition, the sen-
sor adaptation by filtering the point cloud should be evaluated
in detail. In addition, the influence of the enhanced HSI data on
more specific classification applications should be addressed
in the future. The proposed method can be helpful, especially
for the exploration of the different sensor responses. Due to
the physically based adaptation, the method is generic and can
be adapted to different ALS wavelengths. All of these efforts
will profit from upcoming multiple-wavelength ALS systems
and thereby bring airborne imaging spectroscopy closer to real
reflectance measurement.

VI. CONCLUSION

Three key findings can be drawn from the in-flight cross
calibration of ALS and HSI sensors:

1) In general, deshadowing, illumination correction, albedo
leveling, and mosaicking during HSI preprocessing can
be enhanced using ALS intensity information.

2) As a consequence, classification can be improved by the
fusion of intensity data from ALS and HSI. For example,
the classification of heterogeneous urban and vegetated
surfaces, which are spectrally confirmed under shadowed
conditions, benefits from the data fusion.

3) A point-cloud-based combination and adaptation of both
sensor responses on a raw data level is necessary, to
properly characterize the morphological heterogeneity of
vegetated and urban surfaces.

The proposed method is the first in-flight airborne HSI and
ALS intensity data fusion. It is based on a rigorous radiometric
correction of the ALS intensity data and cross calibration
with the HIS data. The physically based correction results
in realistic HSI reflectance values where relief, illumination,
shadows, and directional effects have been compensated and
corrected for. The method provides a suitable basis to explore
and adapt the sensor responses and develop unexploited syner-
gies concerning the radiometric enhancement of both sensors.
The results show that a combination of active ALS and
passive HSI systems can strengthen the overall data quality
and classification accuracy of HSI reflectance, especially for
heterogeneous vegetation structures and all urban settings. The
data fusion is useful for complex illumination and shadow-
ing situations, for example, clouds and rough terrain. The
presented methodology and promising results can be applied
for various specialized applications, such as tree-species iden-
tification and high-spatial resolution urban mapping, which
rely on constant and comparable illumination conditions. Our
results give evidence that, beyond the ALS accurate range
measurement, these systems can support and enhance HSI pre-
processing with intensity information, especially for heteroge-
neous urban and vegetation surface coverage. The combination
of both sensors achieves a true reflectance measurement that
accounts for shadowing, directional effects, and atmospheric
heterogeneities. With future advances, such as multispectral
ALS systems, a rigorous data fusion approach will be essential
to extract high-resolution information and increase the quality
of mapping applications.
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