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a b s t r a c t

Rivers draining the southern Himalaya provide most of the water supply for the densely populated Indo-

Gangetic plains. Despite the importance of water resources in light of climate change, the relative contribu-

tions of rainfall, snow and glacier melt to discharge are not well understood, due to the scarcity of ground-

based data in this complex terrain. Here, we quantify discharge sources in the Sutlej Valley, western Himalaya,

from 2000 to 2012 with a distributed hydrological model that is based on daily, ground-calibrated remote-

sensing observation. Based on the consistently good model performance, we analyzed the spatiotemporal

distribution of hydrologic components and quantified their contribution to river discharge. Our results in-

dicate that the Sutlej River’s annual discharge at the mountain front is sourced to 55% by effective rainfall

(rainfall reduced by evapotranspiration), 35% by snow melt and 10% by glacier melt. In the high-elevation oro-

genic interior glacial runoff contributes ∼30% to annual river discharge. These glacier melt contributions are

especially important during years with substantially reduced rainfall and snowmelt runoff, as during 2004, to

compensate for low river discharge and ensure sustained water supply and hydropower generation. In 2004,

discharge of the Sutlej River totaled only half the maximum annual discharge; with 17.3% being sourced by

glacier melt. Our findings underscore the importance of calibrating remote-sensing data with ground-based

data to constrain hydrological models with reasonable accuracy. For instance, we found that TRMM (Tropi-

cal Rainfall Measuring Mission) product 3B42 V7 systematically overestimates rainfall in arid regions of our

study area by a factor of up to 5. By quantifying the spatiotemporal distribution of water resources we pro-

vide an important assessment of the potential impact of global warming on river discharge in the western

Himalaya. Given the near-global coverage of the utilized remote-sensing datasets this hydrological modeling

approach can be readily transferred to other data-sparse regions.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Runoff from the Himalaya is extensively used for hydropower gen-
eration, agriculture, as well as urban and rural household use in the
densely populated Indo-Gangetic Plains [7,18]. In light of recent cli-
matic change [52], glacial retreat [15,89,98], population growth [109]
and groundwater depletion [86] quantitative assessment of the avail-
able water resources in this region is a crucial task [49,113]. Al-
though discharge generated from melting of snow and ice is gener-
ally assumed to be significant, the scarcity of detailed ground-based
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observations make quantification of their relative contributions to Hi-
malayan discharge difficult.

Hydrological models are useful tools to explore and quantify
fluvial discharge. Runoff from melting snow and ice is com-
monly estimated using either surface-energy balance [4,54] or
temperature-index models [59,63,83]. In the Himalayan region,
large-scale surface-energy balance approaches are currently not fea-
sible, because of poorly validated input variables (e.g., wind speed,
water-vapor pressure, humidity, radiation fluxes, etc.). In contrast,
temperature-index models, which represent simplified empirically
based alternatives, require less input data that are usually available
for most regions on Earth. However, their simplicity may lead to
lower accuracy and larger uncertainties of the results [34,78,82].
Furthermore, coefficients of temperature-index models can vary
significantly within individual watersheds [42,58]. For a stronger
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physical basis of the melt water generation, the shortwave radiation
balances can be included in so-called enhanced temperature-index
models [44,78,83]. Furthermore, spatially distributed models are
able to account for the high-spatial variability of meteorological
parameters in mountain regions [38], but require input data that
approximately match the spatial resolution of the model grid.

To achieve complete input data coverage in distributed models,
previous studies have commonly extrapolated low-elevation station
data to higher altitudes [e.g. [20,61,95,97]]. Extrapolation of station
data for catchments with a high elevation range is problematic in
mountainous regions because of the high-spatial variability of both,
precipitation and temperature [9,17,62]. Alternatively, several satel-
lite systems provide processed and gridded data products that can
be used for hydrological modeling [6,90]. In the Himalaya, various
MODIS and TRMM data products have been successfully integrated
in hydrological models by studies that focused on mean-monthly
discharges [e.g., [18]], or daily discharges in very large watersheds
using MODIS [e.g., [51]]. Such approaches take advantage of tem-
poral and/or spatial averaging, which reduces the uncertainties in
the remote-sensing input data that typically contain noise, artifacts,
and data gaps introduced by varying surface and atmospheric condi-
tions, as well as specific sensor characteristics and data-processing
methods [28]. Therefore, hydrological models with a high spatial
and temporal resolution using remote-sensing based information
on water fluxes (e.g. rainfall, evaporation) or land cover (e.g. snow
cover, vegetation) need to be carefully calibrated to account for these
uncertainties.

Recent hydrological modeling studies indicate high snow melt
contributions to river discharge in the western Himalaya on the or-
der of 30–60% [18,51,53,95]. In contrast, estimates of glacier melt
contributions to river discharge in the Himalaya vary considerably
between 2% and 30%, depending mainly on differences in glacier-
ized catchment area, precipitation, temperature, and solar radiation
[2,51,53,81].

The objective of this study is to develop a distributed hydrological
model that is driven by calibrated remote-sensing data to study dis-
charges in variably-sized catchments in steep mountainous regions,
where ground-based stations are rare. As part of our modeling effort,
we assess to what degree calibrated remotely sensed data change
the model results, when compared to simple extrapolation of station
data and uncalibrated remote-sensing data. Based on the hydrological
model we analyze the spatial distribution of water resources and the
temporal variations of river discharge components in the Sutlej Valley
for the study period from 2000 to 2012. Furthermore, we investigate
the relation of glacier snow-cover periods and glacier melt. Based on
our novel approach to drive a distributed hydrological model with
calibrated remote sensing data, we are able to accurately quantify the
spatial and temporal variations in the release of transient water stor-
ages and investigate their impact on river discharge.

2. Study area

The Sutlej River is a tributary of the Indus River and has the third
largest drainage area in the Himalaya (55,000 km2), with two-thirds
being located in China (Tibet) and one third in India (Fig. 1). Starting
at the mountain front, surface elevations range from 400 m to 7200 m
asl. More than 80% of the catchment area is located in the semi-arid
to arid orogenic interior at elevations >4000 m asl, which results in
a catchment-average elevation of 4400 m asl (Supporting material –
Fig. S1). Vegetation cover is thick and dense at lower elevations at the
mountain front, but decreases rapidly above an elevation of 3000 m
asl and is virtually absent > 3500 m asl. Therefore, the primary land
cover in the Sutlej Valley is bare ground (81.7%), as compared to trees
and shrubs (7.2%), cultivated areas (6.8%), glaciers (3.2%), and lakes
(1.1%) [31] (Table 1). Soil cover is present only in the lower part of the
Sutlej catchment, which constitutes a small fraction (< 15%) of the

entire drainage area and therefore is likely to have a low impact on
overall water storages.

Precipitation in the western Himalaya has pronounced seasonal
and spatial variations [18]. Snowfall occurs mostly between Decem-
ber and March and increases with elevation and relief [50,94,110].
During the summer months, the Indian monsoon (mid July–mid
September) accounts for intense rainfall, which is mostly focused
along orographic barriers of the southern Himalayan front and cre-
ates a steep SW-NE rainfall gradient, with > 2 m/yr at the fontal
parts to < 0.2 m/yr over a horizontal distance of < 100 km encom-
passing a mean elevation range of > 4000 m [17,111]. Although most
monsoonal moisture is blocked by the High Himalaya, during active
monsoon phases, strong convective cells sometimes migrate across
this barrier and result in cloudbursts that can mobilize enormous
amounts of sediments [19,25,43,111].

3. The hydrological model

3.1. Runoff production

The newly set up distributed hydrological model calculates runoff
during each time step (1 day) at each cell in the gridded model space,
i.e., digital elevation model (DEM), and routes the water through the
river network taking flow times and runoff storage into account. Daily
runoff production, RP (mm/day), at a given location is the sum of
snow melt (Ms), glacier melt (Mg), and rainfall (Pr), reduced by evap-
otranspiration (ET), according to:

RP = Ms + Mg + Pr − ET (1)

The input data for rainfall and evapotranspiration are based on
calibrated remote-sensing products, and discussed in Section 4.2 and
4.3. In contrast, snow and glacier melt are computed by processing
multiple remote-sensing datasets.

3.2. Snow- and glacier melt

Similar to previous studies [22,44,45,63,78,83], we use a
temperature-index model that incorporates the influences of solar ra-
diation, snow albedo, and cloud cover. Daily snow melt (mm/day) is
calculated for every snow-covered cell according to:

Ms =
{

(T · t fs + Rsw · sr fs) · As, T > Tt

0, T ≤ Tt

}
(2)

where T (°C) is the mean daily temperature, Rsw (W/m2) is the mean
daily net shortwave radiation, As (m2) is the snow-covered area, tfs

(mm °C−1 day−1) is an empirical temperature factor for snow melt,
and srfs (mm W−1 m2 day−1) is an empirical shortwave radiation fac-
tor for snow melt. Tt is a threshold temperature above which melt is
assumed to occur (e.g., 0 °C). Glacier melt Mg (mm/day) is calculated
similarly but occurs only if the corresponding cell is ice-covered and
snow-free:

Mg =
{

(T · t fg + Rsw · sr fg) · (Aice + df · Adebris), T > Tt

0, T ≤ Tt

}
(3)

where Aice (m2) is the glacier area with clean ice exposure, Adebris

(m2) is the glacier area with debris cover, df is a dimensionless
scaling factor for reduced melt rates on debris covered ice, and tfg

(mm °C−1 day−1) and srfg (mm W−1 m2 day−1) are empirical coeffi-
cients that relate temperature and shortwave radiation, respectively,
to melt water production. Because supraglacial debris cover with a
thickness > 2 cm, reduces ice melt due to its shielding effect on ra-
diation and heat fluxes [20,48,64,84], we introduce a debris factor, df,
that allows reducing melt rates for debris-covered ice.

Net shortwave radiation, Rsw, is calculated as [78]:

Rsw = Rsky · fcc · (1 − α) (4)
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Fig. 1. (A) Shaded relief and elevation map of the western Himalaya with inset showing map location. Black polygon outlines the Sutlej catchment and defines the hydrologic model

domain; white dashed line is the international border between India and China. White circles indicate weather stations recording rainfall and partially snow water equivalent. Gray

squares represent weather stations in Patiala, Dehradun, Kalpa, Rakchham, Khab and Namgia (west to east), which additionally record daily minimum and maximum temperatures.

Black stars denote river-gauging stations of the Sutlej main stem and tributaries at Bhakra (i), Ganvi (a), Wangtoo (h), Wanger (b), Baspa (c), Powari (g), Karoo (f), Spiti (d), Namgia

(d) (west to east, cf. Table 1). (B) Characteristic ground-station data showing mean monthly temperature, precipitation, and runoff at the Himalayan Front (1), at the Himalayan

Crest (2), and at the southern Tibetan Plateau (3).

where, Rsky (W/m2) is the incident clear sky solar radiation, fcc is
a calibrated dimensionless factor, ranging between 0.61 and 1 (see
Section 4.4.3), which accounts for reduction of clear sky radiation due
to cloud cover, and α is the snow or ice albedo.

3.3. Runoff response

This runoff response module is based on the HBV model con-
cept [12,13]. Similar to the hydrological modeling system PREVAH
[38,104], we account for runoff storage in subsurface reservoirs by
two linear storages (SUZ and SLZ; Fig. 2). We use these reservoirs
to differentiate between surface runoff [RS (mm/day)], interflow [RI
(mm/day)], and groundwater runoff [RG (mm/day)] by modeling a
specific runoff response for each component (Fig. 2). The groundwa-
ter storage is further divided into fast (RG1) and slow-leaking (RG2)
components. The sum of all runoff components for each time step (t)
corresponds to simulated river discharge (Qsim):

Qsim(t) = RS(t) + RI(t) + RG1(t) + RG2(t) (5)

Water flows are computed for each time step (dt), which can be
defined arbitrarily. We use daily intervals based on the daily data

availability of MODIS and TRMM remote sensing data and river dis-
charge measurements. Daily runoff production (RP) replenishes the
upper storage reservoir (SUZ) to generate interflow and additional
surface runoff, if a certain storage threshold is exceeded [SImax (mm)].
Water in the SUZ drains by percolation [PERC (mm/day)] into the
lower groundwater reservoir (SLZ), from where groundwater runoff
occurs. This hydrologic budget of both reservoirs is described by the
following governing equations:

SUZ(t) = SUZ(t − 1) + (RP(t) − (PERC(t − 1)

+ RS(t − 1) + RI(t − 1))) · dt (6)

SLZ(t) = SLZ(t − 1) + (PERC(t) − RG1(t − 1) − RG2(t − 1)) · dt

(7)

The residence period of each runoff component (RI, RS, RG1, RG2)
is controlled by the storage time parameters [K0-K3 (day)]. Conse-
quently, the generation of interflow (RI) and surface runoff (RS) de-
pends on the content of the upper storage reservoir (SUZ) and the
storage time parameters (K1, K0).

RI(t) = SUZ(t) · (1 − e− t
K1 ) · dt−1 if SUZ > 0 (8)
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Table 1

Topographic, land cover, and hydrological characteristics of the modeled catchments.

Catchmentsa Topography Land cover Hydrology

Area Elevation Relief Location Bare ground Vegetation Glacier Snow cover Runoff

[km2] Min [km] Mean [km] Max [km] [km/ 5 km] Lat [°] Lon [°] area [%] area [%] area [%] area [%] [m yr-1 m-2]

Tributaries Ganvi (a) 117 1.6 3.4 5.6 2.58 31.55 77.76 33.3 62.5 4.1 25.6 1.25

Wanger (b) 264 2.5 4.4 5.7 2.24 31.62 78.02 69.1 16.1 14.8 55.4 1.59

Baspa (c) 989 2.5 4.7 6.4 2.21 31.42 78.26 57.1 23.8 19.1 54.8 1.16

Spiti (d) 12,477 2.6 5.0 6.7 1.68 31.81 78.64 92.6 1.6 5.9 38.4 0.23

Sutlej River at Namgia (e) 30,950 2.6 4.8 7.2 0.93 31.81 78.65 91.1 7.0 1.9 19.8 0.06

Karoo (f) 46,025 2.2 4.8 7.2 1.21 31.59 78.36 90.9 5.9 3.2 26.1 0.14

Powari (g) 46,291 1.9 4.8 7.2 1.22 31.52 78.27 90.7 6.1 3.2 26.1 0.15

Wangtoo (h) 48,316 1.5 4.8 7.2 1.27 31.56 77.98 89.3 7.1 3.6 26.9 0.20

Bhakra (i) 54,926 0.4 4.4 7.2 1.30 31.41 76.43 81.7 15.1 3.2 24.1 0.23

a Labels in parenthesis refer to the gauging station of each catchment as indicated in Fig. 1.

Fig. 2. Schematic overview of runoff fluxes and storage modules in the hydrological

model. SG1 and SG2 represent fast and slow-leaking groundwater storages, respec-

tively. SImax, SG1max , and PERCmax represent thresholds for the generation of surface

runoff, slow groundwater runoff, and the percolation rate (PERC), respectively.

RS(t) = (SUZ(t) − SImax) ·
(
1 − e− t

K0

)
· dt−1 if SUZ > SImax (9)

A threshold on the percolation rate [PERCmax (mm/day)] limits the
flux into the groundwater reservoir. Groundwater storage is divided
into a fast-leaking storage (SG1) and a slow-leaking storage (SG2),
which are filled by recharge rates [GR1, GR2 (mm/day)] as a function
of the percolation rate (PERC) [93]. The fast groundwater component
[RG1 (mm/day)] is limited by a maximal storage capacity [SG1max

(mm)], whereas the slow groundwater component [RG2 (mm/day)]
has no upper limit. The generation of groundwater runoff is governed
by the storage time parameters (K2, K3) and the change in storage
of the groundwater reservoirs during dt. Constant and tunable model
parameters for each catchment are listed in Table 2.

RG1(t) = [SG1(t − 1) ·
(
e− t

K2

)
+

(
1 − e− t

K2

)

· GR1(t − 1) · K2]/K2 if SLZ > 0 (10)

RG2(t) = [SG2(t − 1) ·
(
e− t

K3

)
+

(
1 − e− t

K3

)

· GR2(t − 1) · K3]/K3 if SG1 > SG1max (11)

3.4. Runoff routing

To account for discharge travel times, we estimated flow veloc-
ities, v (m/s), based on a modified version of Manning’s formula,

according to:

v = s f −1 · HR0.66 · S0.5 (12)

where, S (m/m) is the local channel gradient, HR (m) is the flow
hydraulic radius and sf (dimensionless) represents a scaling factor,
which is equivalent to Manning’s roughness factor, to adjust the flow
velocity to field observations from the Sutlej River [91] (Fig. 3). For
simplicity, we assume a rectangular Sutlej River cross section and cal-
culate hydraulic radius as a function of the river depth (D) and river
width (W):

HR = D · W · (2 · D + W )−1 (13)

We estimate river depths and widths based on a power-law scal-
ing with bankful discharge, Qbf [e.g., [3,60]]:

D = xd · Qyd

b f
(14)

W = xw · Qyw

b f
(15)

We use the coefficients from Allen et al. [3] (xd = 2.71, yd = 0.557,
xw = 0.349 and yw = 0.341), which are based on regression anal-
ysis with a dataset of 674 river cross sections across the USA and
Canada. While measurements from satellite imagery to the east of
our study area corroborates an exponent yw close to ∼0.4 as a general
average, there exists considerable channel-width variability between
contrasting lithologic and tectonic regimes that cannot currently be
accounted for with a simple power-law approach [33].

For simplicity, we assume that hydraulic radii for non-bankfull
discharge follow the same geometric rule as for bankfull discharge.
Hence Eqs. (14) and (15) are used to calculate the hydraulic radius
in Eq. (13) based on the mean annual discharge. We account for sea-
sonally varying flow times by scaling winter flow path times accord-
ing to flow velocity measurements (1.54 m/s in winter, 3.20 m/s in
summer) of the Sutlej River at Luhri (31.34°N, 77.42°W) close to the
mountain front at Bhakra [75] (Fig. 3). Based on these mean river dis-
charge velocities, obtained by repeated float method measurements
using a surface velocity correction factor of 0.7, the scaling factor sf in
Eq. (12) ranges between 0.549 (winter) and 0.264 (summer). These
scaling factor values are relatively high in comparison with other
Manning’s roughness factors, which can be attributed to the simpli-
fied assumption of a rectangular riverbed with estimated river depths
at bankful discharge. To derive discharge lag times based on the av-
erage flow path velocity we calculated the euclidean distance of each
cell to the catchment outlet along the flow paths by the D8 flow ac-
cumulation algorithm. Drainage networks and flow paths were ex-
tracted using the TopoToolbox v2 [92]. Finally, we delayed runoff for
each pixel according to its average daily flow time from the pixel lo-
cation to the drainage basin outlet (Fig. 3). This delay is measured in
days (t) and sub-daily fractions (hourly delay) between day (t) and
day (t+1) based on the inverse ratio of the fractions.
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Table 2

Values of calibrated tunable and constant model parameters for each catchment.

Catchments Tunable model parameter Constant model parameter

srfs tfs srfg tfg SImax SG1max PERCmax K0 K1 K2 K3

[mm m2 W -1 day-1] [mm °C-1 day-1] [mm m2 W-1 day-1] [mm °C-1 day-1] [mm] [mm] [mm day-1] [day] [day] [day] [day]

Tributaries Ganvi 0.150 1.72 0.482 0.50 2.5 20.7 6.2 0.4 3.1 31.3 104.2

Wanger 0.088 6.44 0.484 1.79 6.5 32.5 13.9 0.4 3.1 31.3 104.2

Baspa 0.093 5.21 0.313 0.76 23.5 84.2 16.9 0.4 3.1 31.3 104.2

Spiti 0.022 2.73 0.160 0.24 54.5 266.9 79.8 0.4 3.1 31.3 104.2

Sutlej River at Namgia 0.009 0.89 0.062 1.34 35.0 183.5 29.8 0.4 3.1 31.3 104.2

Karoo 0.021 2.54 0.138 0.28 140.1 667.1 111.1 0.4 3.1 31.3 104.2

Powari 0.019 2.62 0.127 0.22 132.8 673.4 125.5 0.4 3.1 31.3 104.2

Wangtoo 0.025 3.09 0.165 0.52 150.0 725.7 170.3 0.4 3.1 31.3 104.2

Bhakra 0.019 1.80 0.119 0.38 158.7 794.8 232.0 0.4 3.1 31.3 104.2

Fig. 3. (A) Flow-path distances in km for each cell to the Sutlej River at Bhakra. (B) Lag-time scaling factor based on the annual mean discharge at Bhakra smoothed with a 50-day

running window. (C) Mean-seasonal flow path velocities for the path of each cell to the Sutlej River at Bahkra. Note the generally higher flow velocities in the steep sections of the

middle Sutlej. (D) Mean-seasonal flow path times.

4. Model input data and calibration procedures

4.1. Ground station data

The available weather station data comprise 63 weather stations
from the Indian Meteorological Department (IMD), 17 high-elevation
stations operated by the Bhakra Beas Management Board (BBMB) and
three weather stations that are part of the World Meteorological Or-
ganization’s (WMO) Regional Basic Climatological Network (Fig. 1).
The IMD stations record rainfall only, whereas the BBMB and WMO
stations additionally measure snow water equivalent (SWE) by melt-
ing daily amounts of snow captured in a snow gauge. Furthermore,
all WMO and four BBMB stations (Fig. 1) record daily maximum and
minimum temperatures, including one automated weather station at
Khab that records hourly data of rainfall, temperature, and incident
solar radiation. We preprocessed the precipitation data according to
quality-control measures introduced by Einfalt and Michaelides [30]
and excluded unreliable values from subsequent analyses [111]. In
total, the available precipitation records cover a fourteen-year time
span from 1998 to 2012, but lack completeness by 52% on average.
The weather stations cover a steep north–south precipitation gra-
dient across the main Himalayan crest and range in elevation from
250 m to 4280 m asl [111] (Supporting material – Table S1). We use
these precipitation records to calibrate and adjust the TRMM 3B42
rainfall data set.

In the Indian part of the Sutlej Valley, several privately owned and
governmental hydropower companies operate a dense network of
river-gauging stations. Most station records cover the time span from
January 2004 to August 2008, although a severe flood in the Sutlej
River on June 26, 2005 has led to interruptions at five stations, last-
ing 1–8 months [112]. The daily discharge measurements are based
on stage-discharge rating curves that are annually recalculated dur-
ing low-flow conditions in winter due to channel-bed changes. We
use river-discharge records from five gauging stations on the Sutlej
River and four of its major tributaries to calibrate and validate our
model. This procedure enables us to quantify the discharge compo-
nents, their uncertainties, and their spatial variation across different
climatic zones in the Sutlej catchment.

4.2. Rainfall

To compute runoff due to rainfall, Pr, in our hydrological model,
we tested three approaches that yield rainfall estimates with increas-
ing spatial complexity. The first and simplest approach was to use
the weather-station data and interpolate the rainfall records based
on a 2D Delaunay triangulation-based interpolation method, which
weights the area-of-influence associated to each weather station and
performed well in previous studies with sparse data locations [79]. In
our second approach we used a daily satellite-derived rainfall record,
based on the TRMM product 3B42 (version 7), which has a spatial
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Fig. 4. (A) Comparison of original (solid line), filtered (dotted line), and filtered &

scaled (re-calibrated) (dashed line) TRMM 3B42 V7 with weather station (WS) rainfall

data at 66 locations below 2000 m asl for the time period 2000–2012. Scaling is based

on the relation between TRMM 3B42 and weather station data (Fig. 5) and TRMM 3B42

data is filtered for snow cover and maximum daily temperatures below 0°C. Mean an-

nual rainfall in this region is > 0.7 m/yr. (B) Comparison of original (solid line), filtered

(dotted line), and filtered and scaled (re-calibrated) (dashed line) TRMM 3B42 (2000–

2012) with snow water equivalent (SWE) and rainfall data of 16 weather stations (WS)

located above 2000 m asl, where mean annual rainfall is < 0.7 m/yr.

resolution of 0.25° × 0.25° (∼30 km × 30 km) and a temporal res-
olution of 3 h. This data set combines microwave and infrared rain-
rate estimates from sensors onboard several low-earth orbit and one
geosynchronous satellite, which are rescaled to monthly rain-gauge
data [46]. Previous studies suggest that the TRMM 3B42 product is
comparable to other satellite based rainfall products, which generally
show a lower performance in complex terrain [e.g., [26,65,88,102]].
Although the spatial resolution of the TRMM 3B42 data makes direct
comparison to weather station data difficult, Pan et al. [74] found in a
comparison of different satellite-based precipitation products for the
United States that rain-gauge assisted corrections of satellite prod-
ucts significantly enhance their skill in hydrologic predictions, espe-
cially over mountainous areas.

To assess the potential requirement for correcting the TRMM-
based rainfall, we compared the TRMM 3B42 product with 84
weather-station records across our study area. In general, TRMM cap-
tures rainfall at the humid range front with mismatches < 6% during
all months of the year, but overestimates rainfall by up to ∼100% in
the arid interior parts (Figs. 4, 5). The mismatch in the arid areas is
most pronounced during the summer season (May–October). During
the winter season TRMM data also indicate substantial rainfall in the
high-elevation orogenic interior (Fig. 4B), despite concurrent snow
coverage and temperatures below freezing. Given the coinciding in-
crease in TRMM rainfall rates with snowfall, it appears that the TRMM
data has difficulties in these areas to distinguish between snow and
rainfall.

Fig. 5A shows the ratio between mean annual rainfall based on
TRMM data and on weather station data for each of the weather sta-
tions, and thus by how much the TRMM data over- or under-predicts
the ground measurements. Rainfall is overestimated in the arid inte-
rior part of the range by a factor of 2–5, whereas it is underestimated
at the humid range front by up to 50% (Fig. 5C). These data follow a

negative power-law relation with a high coefficient of determination.
It is currently not clear if this is a systematic bias in the TRMM-based
rain rate, an effect of the temporally sparse sampling of the satellite
product or due to the high spatial variability of rainfall and associ-
ated aliasing. To further test the ability of TRMM to detect individual
rainfall events, we compared daily rain rate observations by TRMM
with the weather station records (Fig. 5B). In this comparison, we ex-
amine the TRMM performance based on its ability to detect (hit, H),
not detect (miss, M), or erroneously predict (false alarm, FA) rainfall
events. We only consider rainfall records above 2 mm, which rep-
resents the minimum recording level of weather stations. The false
alarm rate (FAR) and hit rate (HR) are calculated according to Jolliffe
and Stephenson [55] and Swets [100] by:

FAR = FA · (H + FA)−1 · 100 (16)

HR = H · (H + M)−1 · 100 (17)

Similar to the trend in mean annual rainfall we find a reasonably
good performance (∼70% hit rate, ∼40% false alarm rate) of the TRMM
data at the orogenic front, whereas towards the interior of the orogen,
TRMM has slightly fewer hits (∼60%) and a much higher false alarm
rate (∼70%).

In summary, our comparison revealed that the performance of
the TRMM data increases with increasing rainfall amounts through-
out the region, but is relatively low where rainfall is low, such as
in the orogenic interior. To overcome this problem, we first filtered
the satellite-based rainfall data using MODIS snow cover data (see
Section 4.4.1) and air temperature data (see Section 4.4.2). TRMM
rainfall events are filtered out in areas with daytime temperatures
below 0 °C and are scaled in areas with snow cover by the inverse
snow cover fraction. Second, we scaled the daily TRMM observa-
tions with a spatially varying factor that is based on the power-law
scaling relation between mean annual rainfall derived from TRMM
and the ground stations (Fig. 5A). With this third re-calibration ap-
proach, we aim to capture adequately the reduction in rainfall to-
wards the high-elevation arid orogenic interior and to remove snow-
rain confusion at higher elevations throughout the year. In the results
Section 5.1, we evaluate the model performance using three different
rainfall datasets: (1) the interpolated weather station data, (2) the
original TRMM rainfall, and (3) the re-calibrated TRMM rainfall data.

4.3. Evapotranspiration

Evapotranspiration in our model is based on the MODIS Global
Terrestrial Evapotranspiration Product (MOD16A2), which is avail-
able at ftp://ftp.ntsg.umt.edu/pub/MODIS/NTSG_Products/MOD16/
MOD16A2.105_MERRAGMAO/ [69,71]. The evapotranspiration algo-
rithm is based on a physical model using the Penman–Monteith
method and considers surface-energy partitioning and environmen-
tal constraints, such as vegetation cover and meteorological condi-
tions, on evapotranspiration [23,68,70]. The current algorithm also
includes nighttime evapotranspiration and soil-heat flux among
other improvements and has been evaluated across different terrain
and land cover types in North America where it shows reasonable
good correlation (r2 = 0.81) with ground-based data [69].

The gridded evapotranspiration data are 8-day composites with
a spatial resolution of 1 km. After resampling the data to the spa-
tial resolution of the model domain, we disaggregated the 8-day
composite to daily data by linear interpolation between two 8-day
composites. Because there are no developed soils and associated veg-
etation covers in more than 85% surface area of the Sutlej catchment,
we assume near-surface soil water storage is negligible. Therefore
we consider only evaporation from the surface layer during days
with rainfall. The resulting effective precipitation (rainfall reduced
by evapotranspiration) represents the daily budget of rainfall and
evapotranspiration within a modeling cell. If daily evapotranspiration
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Fig. 5. (A) Correlation of mean annual weather station (WS) rainfall data versus the ratio of mean annual TRMM 3B42 to WS data for the period 2000–2012. This rainfall ratio

indicates a scaling factor by which TRMM over (>1) or underestimates (<1) weather station records. (B) Analysis of TRMM 3B42 data regarding its probability of detection and

misinterpretation of daily rainfall at weather stations. (C) Topographic swath profile of the western Himalaya and the mean annual precipitation ratio of TRMM 3B42 and WS

records. (D) Location of weather stations and the topographic swath profile.

exceeds rainfall, the effective rainfall is set to zero. The effective pre-
cipitation has an average annual evapotranspiration fraction of 0.21,
which agrees reasonably well with field-based data from the Central
Himalaya, where ∼15% of the daily moisture supply is recycled by
evapotranspiration [8].

4.4. Snow and ice melt components

4.4.1. Fractional snow cover (FSC)
Snow melt in our model occurs when a given pixel is snow cov-

ered and temperatures are above zero. However, we excluded lake ar-
eas from our snowmelt module, because snowmelt on frozen lakes
does not infiltrate into the ground, as it gradually turns into lake
water with a considerable time delay. In our model we used daily
fractional snow cover (FSC) observations that are derived from the
MODIS instrument onboard the Terra and Aqua satellites of the NASA
Earth Observation System. The globally available MOD10A1 (Terra)
and MYD10A1 (Aqua) products (current version 5) provide daily ob-
servations of FSC and snow albedo, with a spatial resolution of 500 m
[40]. Terra images are available since March 2000 and Aqua images
since July 2002. The MODIS snow detection algorithm employs the
normalized difference snow index (NDSI), which determines the dif-
ference in reflectance of snow between visible and short infrared
wavelengths [40,41]. FSC gives the fraction of a pixel, which is snow
covered, and is computed from a functional relationship between
MODIS NDSI and higher resolution Landsat FSC data [87]. Comparison
of MODIS snow products with ground measurements in the western
US and Austria have yielded accuracies of 94–95% [57,76]. However, it

should be noted that characterizing snow cover by spectral mixing is
more accurate than empirical methods based on the NDSI, especially
during periods of accumulation and melt [85].

The utility of the MODIS snow-cover products for hydrological
modeling is limited by cloud cover, which causes data gaps. We re-
duced these data gaps by first complementing missing Terra data
with Aqua snow-cover observations from the same day [28,37]. As
a result, the average data gaps in Terra FSC imagery reduce from
37.4 ± 27.8% to 31.9 ± 26.5%. In a next step, we corrected for artifacts
introduced by large viewing angles and other systematic errors with
spline interpolation on the FSC time series. The smoothing splines are
weighted based on the sensor zenith angle, which is provided in the
MODIS surface reflectance product MOD09GA [28]. Finally, we filled
the remaining data gaps, with average durations of 2.1 days, by piece-
wise linear interpolation [36].

Besides cloud-cover gaps, the daily MODIS snow-cover product
is also affected by snow/cloud discrimination errors [28,39]. Despite
improvements in the cloud detection algorithm in the recent ver-
sion (v5), the MODIS snow-cover algorithm occasionally confuses
cloud with snow cover. These problems are associated with cloud-
shadowed land and cloud type identification errors [39]. It is impor-
tant to filter out these confusions, as they are typically associated
with low elevations and high temperatures, which can cause con-
siderable snow-melt runoff. To filter erroneous snow cover we cal-
culated the daily average snowmelt elevation and excluded all snow
cover that is 2000 m below this reference.

Based on this snowmelt elevation filter, we analyze the tempo-
ral distribution of clouds misclassified as snow for the combined
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Fig. 6. Mean annual (2000–2012) distribution of snow covered area (SCA) and the per-

centage of misclassified snow on total snow cover (M∗D10A1). We applied a 10-day

moving average filter for enhanced visibility.

Aqua and Terra FSC observations (Fig. 6). Here, we find pronounced
snow/cloud confusions during the monsoon season, when the Hi-
malayan front is affected by a dense monsoonal could cover and an-
nual snow cover is at its minimum. Because these snow misclassi-
fications are often associated with high summer temperatures, they
increase annual snowmelt in Sutlej Valley by about 1.8%.

4.4.2. Temperature
We tested three different strategies to compute air temperatures

and evaluated the accuracy of each approach by comparing generated
temperatures with weather-station records to use the most favorable
approach in our hydrological model. The simplest chosen approach is
based on the extrapolation of weather station air temperatures from
Kalpa (Fig. 1) using a constant atmospheric lapse rate of −6.5 °C/km
[11]. The second approach incorporates temperature data from five
weather stations to calculate a seasonally varying atmospheric lapse
rate. We use daily minimum and maximum temperatures from
weather stations in Patiala (250 m), Dehradun (680 m), Kalpa (2730
m), Rakchham (3130 m), and Namgia (2840 m) to calculate the daily
day and nighttime air temperature lapse rate (cf. Fig. 1). Depending
on seasonal variations in the atmospheric moisture content we ob-
serve a high lapse rate during winter and a low lapse rate during
summer (Fig. S2) [29]. Accentuating the seasonal lapse-rate trend we
calculate a mean daily lapse rate for the day and nighttime, which we
use to extrapolate minimum and maximum air temperatures mea-
sured in Kalpa. The mean annual lapse rate is −5.2 ± 1.6 °C/km and
−5.7 ± 1.0 °C/km for day- and nighttime, respectively.

The third approach is based on the MODIS land surface temper-
ature (LST) product (MOD11A1 and MYD11A1) [108], which we cal-
ibrated with local weather station data to derive a distributed daily
air temperature dataset. The MODIS-derived LST data are based on
the view-angle dependent split-window LST algorithm, which cor-
rects for atmospheric and emissivity effects in the thermal infrared
signal over various land cover types [107]. Refinements in the algo-
rithm of the latest LST version 5 improved the accuracy and stability
of LST data especially in high-altitude regions [106]. Most validation
studies indicate that the accuracy of MODIS LST data is better than
1 K [24,106,108]. However, the precise retrieval of snow-surface tem-
peratures is difficult, because snow emissivity varies with the sensor
viewing angle [27]. In addition, mixed pixels, which show exposed
land and snow cover within the 1 × 1 km MODIS LST area, are likely
to further complicate the snow temperature retrieval.

Temperature-index models for estimating snow and ice melt-
ing are usually run with above-ground air temperatures, which
reflect both, incoming longwave atmospheric radiation and sensible

Fig. 7. (A) Linear regression of daily maximum air temperatures from Kalpa, Rakch-

ham, Namgia, Patiala, and Dehradun (cf. Fig. 1) versus daytime MODIS Terra land sur-

face temperatures (LST) weighted by the satellite sensor angle. In general, data with

high residuals have higher sensor angles. (B) Same regression as in A for daily min-

imum temperatures versus nighttime MODIS Terra LST. Regressions for the MODIS

Aqua sensor display the same trend (Fig. S3). Nighttime correlation includes more data

points as cloud cover at night is generally lower.

heat flux, and thereby more than three-quarters of the entire energy
source for melting [73]. The difference between surface and air tem-
peratures is mainly controlled by the surface energy balance [80].
Therefore, shortwave radiation fluxes (e.g., solar radiation), strongly
affect daytime surface temperatures, whereas their impact on night-
time temperatures is minor. The correlation of MODIS day- and night-
time LST with daily maximum and minimum air temperatures of
five weather stations in our study area illustrates these differences
(Fig. 7). Based on these relations, we calculated the corresponding air
temperature of Aqua and Terra LST observation.

Similar to the snow cover data, the LST data are affected by data
gaps due to cloud cover and by other distortions due to steep sen-
sor viewing angles. We reduced these data gaps at first by combin-
ing successive Terra and Aqua observations from the same day and
the same night. As a result, the average data gaps during the day-
time (Terra: 39.7 ± 27.6% (mean ± 1 sigma standard deviation); Aqua
47.3 ± 26.9%) and nighttime (Terra: 30.3 ± 23.1%; Aqua 28.9 ± 21.9%)
observations reduce to 33.6 ± 26.9% and 21.7 ± 21.4%, respectively.
In a next step, we replaced missing data based on linear regressions
between scaled MODIS temperature time series of each pixel and the
air temperature record of the weather station in Kalpa (see Fig. 1),
weighted by the sensor viewing angles. In addition, we used the asso-
ciated quality check datasets (QC_day and QC_night) of the MOD11A1
product to reduce regression weights by half for MODIS LST data
flagged with “other quality”. Finally, we corrected for artifacts in the
scaled MODIS temperatures introduced by large viewing angles and
other systematic errors with weighted spline interpolation in analogy
to the final snow cover processing procedure.

The correlation of air temperatures derived by our three ap-
proaches with air temperature records from weather stations at
Rakchham, Namgia, Patiala, and Dehradun (cf. Fig. 1) shows that
scaled MODIS day and nighttime temperatures yield the best results
(Table 3, Fig. S4). Therefore, we use our third approach based on
MODIS data to calculate air temperatures that drive snow and glacier
melt.

4.4.3. Incoming shortwave radiation
The incoming shortwave radiation (clear sky radiation) is calcu-

lated using standard GIS procedures that account for direct and dif-
fusive components [16]. All parameters of the radiation module are
given in Table S2. We computed daily averages of quarter-hourly free
sky incoming solar radiation for each specific model cell location,
based on a digital elevation model derived from the Shuttle Radar
Topography Mission (version 2) [32], where voids have been patched
with data from topographic maps (J. de Ferranti, 3′′ resolution digital
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Table 3

Evaluation of air temperature datasets based on linear regressions with weather-station records.

Approach Method Regression parameter

r2 rmse [°C] Fit slope

[#] Day Night Day Night Day Night

1 Seasonally constant lapse rate (−6.5 °C/km) 0.84 0.90 3.72 3.10 0.83 0.94

2 Seasonally variable day- and night lapse rate 0.89 0.92 2.95 2.51 0.90 0.90

3 Scaled MODIS LST data 0.91 0.94 2.80 2.45 1.02 0.99

Fig. 8. (A) Comparison of mean daily observed (Robs) and computed (Rclear sky) incoming solar radiation from August 2006 to August 2008 at Khab (cf. Fig. 1). (B) Fractional cloud

cover (FCC) is derived from MODIS Aqua and Terra daytime measurements. For enhanced visibility, we smoothed FCC and Robs by a 5-day running average window. (C) Correlation

of Robs and Rclear sky versus fractional cloud cover. The linear fit is weighted by the occurrences (n) of cloud cover fractions and fixed to the origin (x = 0, y = 1). (D) Scatter plot of

Robs and Rclear sky . (E) Scatter plot of Robs and corrected modeled solar radiation (Rmodel), which is based on Rclear sky and FCC.

elevation data for Asia, 2007, http://www.viewfinderpanoramas.org/
dem3.html).

Clouds reflect and absorb incoming solar radiation [99] and there-
fore reduce snow and glacier melt [77]. We estimate this reduction in
our study area by comparing observed solar radiation, measured at
Khab (Fig. 1), with the computed clear sky radiation and the daily
cloud cover (Fig. 8).

We derived a daily fractional cloud cover (FCC) for each pixel by
averaging the cloud-flags (0 for cloud-free and 1 for cloud-covered)
from the FSC products by the Aqua and Terra satellites. These two
daily MODIS observations are acquired during late morning (mean
solar time: 10:51 ± 0:31 h) by Terra and early afternoon (mean solar
time: 13:13 ± 0:30 h) by Aqua. We used the relation stated in
Fig. 8C to account for reduction in incoming solar ra-
diation due to cloud cover and calculated the mean
daily net shortwave radiation according to Eq. (4) (see
Section 3.1). The snow albedo used in Eq. (4) is part of the MODIS
snow-cover product, which we processed by the same methodology
as described for the snow cover product (see Section 4.4.1). For
glacial surface areas we used a constant surface albedo of 0.34 for
debris-free ice and 0.15 for debris-covered ice [21].

4.4.4. Glacial cover
We used the Randolph Glacier Inventory provided by the Global

Land Ice Measurements from Space Initiative (GLIMS) available at
http://www.glims.org/RGI/, which was recently updated based on the
study by Frey et al. [35] to provide a comprehensive glacier inventory
of the western Himalaya (GLIMS, and NSIDC, 2012). The data provided
by Frey et al., [35] are based on classification of Landsat ETM+ Band
3/5 ratio images from September 2001 and Palsar coherence images
to distinguish between debris-free and debris-covered glacial parts.
We neglect changes in glacial coverage during our study period, be-
cause these are small compared to the 500-m spatial resolution of
our model [89]. Based on the high-spatial resolution (30 m) of the

ice-cover data we generated fractional debris-free and debris-
covered ice areas for each model cell that contains ice (Fig. 9).
The total glaciated area within the Sutlej catchment accumulates to
1761 km2 that corresponds to 3.2% of which ∼8% are debris-covered.

4.5. Model application and calibration

Based on our enhanced distributed hydrological model and the
remotely sensed input data we simulated river discharge at nine lo-
cations (stars in Fig. 1) covering various spatial scales and climatic
environments (Table 1). We calculate daily runoff from April 2000 to
December 2012 at each cell in the gridded model space (463 m) of
the Universal Transverse Mercator (UTM) projection 44N.

Previously, we introduced a set of tunable and constant param-
eters, which drive the hydrological model (Table 4). To calibrate the
snow- and glacier melt, we use four adjustable parameters (srfs, tfs,
srfg, tfg). In our runoff response approach, we use the minimum of
three more adjustable parameters (SImax, SG1max, PERCmax) to avoid
complex parameter interaction (Table 4). Furthermore, the runoff re-
sponse module includes four constants (K0, K1, K2, K3), which were
adopted from default values of the PREVAH hydromodel [103]. Ad-
ditional constant parameters of the snow and melt module include
the threshold temperature (Tt) of 0 °C and the debris factor (df) of 0.7
to account for reductions in glacier melt due to thick debris cover.
This debris factor is derived from annual surface mass-balance mea-
surements (2002–2010) of debris-covered and debris-free parts on
the Chhota Shigri glacier in the neighboring Chandra river basin [5],
which we consider to be representative for a generally thick and
widespread debris cover in the western Himalaya [89].

We define the range of parameter values in the snow- and glacier
melt module based on their contribution to river discharge. The lower
and upper bound of each glacier melt factor can contribute 0–50% to
observed river discharge, respectively. Likewise, the lower and upper
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Fig. 9. Glacial coverage for Sutlej tributary basins > 100 km2 overlain by glacial extent, lakes, and rivers. Ice-coverage is based on Frey et al., [35]

Table 4

Tunable and constant parameters of the melt and runoff response routine.

Parameter Description Unit Rangea Valuea Estimation method

Snow and glacier routine

srfs shortwave radiation factor for snow melt [mm W-1 m2 day-1] 0–0.129 0.019 Calibration

tfs empirical temperature factor for snow melt [mm °C-1 day-1] 0–7.75 1.80 Calibration

srfg shortwave radiation factor for glacial melt [mm W-1 m2 day-1] 0–0.645 0.119 Calibration

tfg empirical temperature factor for glacial melt [mm °C-1 day-1] 0–32.28 0.38 Calibration

df Scaling factor for debris-covered ice [dimensionless] – 0.7 [5] b

Tt Threshold temperature [°C] – 0 [103] c

Runoff response routine

SImax Threshold content of the lower SUZ for generation of surface runoff (SGR) [mm] 0–1000 158.7 Calibration

SG1max Threshold content of the SG1 for generation of slow-leaking recharge [mm] 0–1000 794.8 Calibration

PERCmax Maximal deep percolation rate [mm day-1] 0–1000 232.0 Calibration

K0 Storage time for surface runoff [day] – 0.42 [103]c

K1 Storage time for interflow [day] – 3.13 [103]c

K2 Storage time for quick groundwater flow [day] – 31.25 [103]c

K3 Storage time for slow groundwater flow [day] – 104.16 [103]c

a Range and value of tunable parameters are given exemplarily for the Sutlej catchment at Bhakra.
b value is based on mass balance data published by Azam et al., [5].
c use of PREVAH-default values for the respective runoff type storage time as defined in Viviroli et al. [103].

bound of each snow-melt factor can contribute 0–90% to observed
river discharge, respectively.

To calibrate the tunable parameters (tfs, tfg, srfs, srfg, SImax, SG1max,
PRECmax), we used an automatic optimization method that finds the
best model performance based on the Nash-Sutcliffe efficiency (NSE)
[72] and the relative volume error (RVE) between simulated (Qsim)
and observed discharges (Qobs) [1]:

NSE = 1 −
∑N

i=1 [Qsim(i) − Qobs(i)]2

∑N
i=1 [Qobs(i) − Q̄obs]

2
(18)

RV E = 100 ·
∑N

i=1 [Qsim(i) − Qobs(i)]
∑N

i=1 Qobs(i)
(19)

where i is the time step, N is the total number of time steps, Q̄obs is
the mean of Qobs over the calibration/validation period. For a favor-
able model performance (p), the NSE should be close to the maximum

value of 1 and the RVE value should be close to zero.

p = NSE

1 + |RV E|/100
(20)

This constrained nonlinear optimization method finds the mini-
mum (best performance) of a scalar function with several variables
for a given initial estimate. By generating 100 random starting points
for each of our seven tunable variables within their lower and upper
limits we exclude local minima to confidently detect the best perfor-
mance parameters for the global function minimum.

For each gauging station we divided the river discharge dataset in
two halves, using the first data period to calibrate the model and the
second period to validate its performance (Fig. 10). The calibrated and
constant model parameters that drive the snow- and glacier melt-
module and the runoff response module are given in Table 2.

We tested the model sensitivity to variations (10% incremental
steps) of each calibration factor for snow and glacier melt around
their optimal values on model performance (Fig. 11). The model sen-
sitivity of single melt factors depends on the contribution of the
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Fig. 10. Overview of observed river discharge data at gauging stations of the Sutlej

River and its tributaries (cf. Fig. 1). We calibrate the hydrological model using the

first data period (gray) and validated its performance based on the second data period

(black).

respective melt component to total river discharge, which varies
among the river catchments. In general, the hydrological model is
more sensitive to variations in snow-melt factors as compared to
glacier-melt factors. Therefore, we conclude that variations in the re-
duction of glacier melt below debris cover (factor 0.7 in this model)
will have a low impact on the model performance.

5. Results

5.1. Simulated river discharge

First, we evaluate the model performance of the different rain-
fall datasets that are based on (1) weather station data, (2) orig-
inal TRMM 3B42 data, and (3) re-calibrated TRMM data (see
Section 4.2). Both, the original TRMM 3B42 data and the interpolated
weather station dataset result in excessive rainfall runoff, which ex-
ceeds observed river discharge by more than two orders of magnitude
(Table 2) in the high-elevation arid regions of the southern Tibetan
Plateau (i.e., Spiti and Sutlej at Namgia catchments, cf. Fig. 1). Excess
rainfall in the interpolated weather station dataset is due to the lack
of weather station data in the high-elevation arid regions. Therefore,
rainfall events recorded at distant weather stations in semi-arid re-
gions are wrongly extrapolated to high-elevation arid regions. Sim-
ilarly, missing weather station data from the orogenic interior may
affect the original TRMM 3B42 dataset, as rainfall magnitudes can-
not be rescaled to monthly rain-gauge data. Accordingly, the original
TRMM 3B42 data does not adequately represent the decrease in rain-
fall across the Himalaya. We observe the best model performance us-
ing the re-calibrated TRMM rainfall dataset, which also results in a
realistic partitioning of discharge sources (Table 5).

Using the re-calibrated TRMM data, simulated river discharges
capture very well the observed discharges (Fig. 12). However,
high-elevation catchments with relatively large rainfall contribu-

tions, such as Ganvi and the Sutlej catchment upstream of Namgia,
are not adequately represented as snowfall-dominated catchments.
Apart from these two catchments, the remaining watersheds yield
high performance measures with NSE values ranking between 0.68
and 0.78 and show a high degree of consistency among each other
(Table 5).

Our modeling results covering the period April 2000 to De-
cember 2012 indicate that annual average Sutlej River discharge
(Sutlej at Bhakra) is sourced approximately half by effective rainfall
(55 ± 5.1%) and half by snow (35 ± 5.1%) and glacier melt (10 ± 3.4%)
(Table 5). Along its course from high to low elevations the contribu-
tion of glacier melt to Sutlej River discharge decreases from about
30% to 10%. Rainfall dominates river discharge in catchments at the
Himalayan front, whereas snow melt dominates river discharge in
the high elevation southern Tibetan Plateau and the main Himalayan
crest.

5.2. Spatiotemporal distribution of hydrologic components

In general, mean annual runoff within the Sutlej Basin is char-
acterized by major regional differences (Fig. 13A). The southern Ti-
betan Plateau is characterized by low precipitation and runoff due
to its low relief and its location leeward of the main orographic bar-
rier. The high-relief region of the main Himalayan crest captures most
winter snowfall, which is also reflected by large numbers of glaciers
(Fig. 9). The resulting increases in snow and glacier melt come along
with moderate increases in monsoonal rainfall causing total river
discharge to rise by up to one order of magnitude. This region of
pronounced snow and glacier melt coincides with the steepest sec-
tion of the Sutlej River profile where topographic relief is highest
(Figs. 13A, 14B). In contrast, the Himalayan front is dominated by
rainfall due to lower surface elevations and its windward location
along the main orographic barrier. Increasing vegetation cover and
temperatures cause high evapotranspiration rates (ca. 0.4 m/yr) while
snow and glacier melt decrease from ca. 60% to 0% in this area.

The cumulative runoff of each Sutlej River tributary (>100 km2)
shows that the Spiti and Baspa River are the major contributors of the
Sutlej River (Fig. 13B). Analysis of the relative contributions to Sutlej
River discharge in the downstream direction reveals that snowmelt
is the dominant runoff source in most of the high-altitude part of the
catchment and down to a river elevation of ∼590 m. Downstream
of this point, which corresponds to a linear distance of about 40 km
from the mountain front, effective rainfall becomes the dominant dis-
charge component (Fig. 13C).

We estimated the spatial distribution of snow melt for the pe-
riod October 1st, 2001 to September 30th, 2012 by the “inverse melt”

Fig. 11. Sensitivity analysis of the shortwave radiation factors for snow- (srfs) and glacier melt (srfg) and the thermal factors for snow- (tfs) and glacier melt (tfg).
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Table 5

Comparison of our three different rainfall dataset by their Nash Sutcliffe Efficiency (NSE), relative volume error (RVE), and their mean annual catchment rainfall (Rain).

Rainfall datasets: (1) Weather station data (2) TRMM original (3) TRMM re-calibrated (3) Discharge sourcesa

NSE RVE Rain NSE RVE Rain NSE RVE Rain Snow Ice Rain-ET

Catchments [Dimensionless ] [%] [mm/yr] [Dimensionless ] [%] [mm/yr] [Dimensionless] [%] [mm/yr] [%] [%] [%]

Tributaries Ganvi (a) 0.50 −5.9 494 0.27 21.8 745 0.59 1.4 511 58 1 41

Wanger (b) 0.55 −2.6 245 0.54 12.3 478 0.68 −2.3 162 72 15 13

Baspa (c) 0.77 9.3 266 0.56 15.6 514 0.75 −6.5 218 75 13 13

Spiti (d) −7.49 123.6 273 −0.16 39.0 152 0.78 −0.2 31 67 22 11

Sutlej River at Namgia (e) −107.91 531.8 392 −36.81 309.9 237 0.54 −1.6 50 42 19 39

Karoo (f) −6.30 135.4 351 −2.90 100.2 213 0.71 2.8 44 65 18 17

Powari (g) −18.22 194.2 350 −3.17 98.9 213 0.75 −2.2 45 66 17 18

Wangtoo (h) −2.60 99.7 348 −3.16 84.1 218 0.72 −3.2 51 66 18 16

Bhakra (i) −5.24 96.1 392 −1.99 68.4 300 0.72 1.1 131 35 10 55

a The discharge sources represent the modeling results for the third re-calibrated TRMM rainfall dataset, which we used to drive the hydrological model.

Fig. 12. (A) Comparison of the observed and simulated daily discharges of the Sutlej River at Bhakra near the mountain front (cf. Fig. 1) from September 2006 to December 2012.

(B) Sum of the single simulated discharge components illustrating the different stacked contributions to total runoff. Pie chart represents the contribution of each runoff component

to total discharge over the 6-year period.

approach [67] (Fig. 14A). This annual summation of daily snow melt
represents all the snow that melted during the hydrological year
(October–September). Although snow can persist throughout the
melt season at high elevations, snow accumulation areas are mainly
restricted to glacial accumulation zones. Therefore, we assume that
our snow-melt summation is roughly equal to annual amounts of
snow water equivalent.

The snow-melt distribution varies across the western Himalaya
with snow melt starting at surface elevations of about 1800 m asl
that increases northeastward along with increases in elevation and
relief (Fig. 14B). Snow melt is high (> 0.5 m) in the region of the main

Himalayan crest, from where it decreases towards the Tibetan
Plateau. Despite high elevations, this decline is mainly due to an
increasing leeward distance from the main orographic barrier
and a decrease in topographic relief that effectively captures oro-
graphic precipitation (Fig. 14B). Accordingly, we find large spatial
variations in glacier melt between glaciers situated in the Hi-
malayan crest region and glaciers bordering the Tibetan Plateau
(Fig. S5). Whereas low average ablation rates are typical for large
ice fields in the Himalayan crest region, generally high ablation
rates characterize multiple small glaciers at the southern Tibetan
Plateau.
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Fig. 13. (A) Distance and elevation of the Sutlej longitudinal river profile along with

stacked mean annual (2000–2012) runoff of tributaries > 100 km2. (B) 5-km radius

local relief and mean annual (2000–2012) river discharge of Sutlej River tributaries

> 100 km2. Color-coding is given in (A). (C) Runoff sources of the mean annual Sutlej

river discharge along its river profile. Grey area indicated the catchment area along

the downstream distance with relative glacier area indicated by the dash line. (For

interpretation of the references to color in this figure legend, the reader is referred to

the web version of this article).

Annual river discharge throughout the Sutlej Valley is character-
ized by a pronounced seasonal cycle with low flow during winter and
peak runoff during summer (Fig. 15). Snow melt initiates in March
and dominates river discharge until June regardless of geographic lo-
cation. During that period snow melt in the Sutlej Valley successively
progresses to higher elevations, with peak snow melt at elevations of
4500 to 5500 m asl. From June to September monsoonal rainfall and
glacier melt contribute approximately equal to river discharge at and
upstream of the main Himalayan crest.

5.3. Annual variations of hydrological components

The observed Sutlej River discharge at the mountain front has a
high annual variability, with discharge varying by almost a factor of
two between individual years (i.e., 2004 and 2005/2010, Fig. 16D).
Comparing the annual variation of ground-based measurements with
simulated runoff of each hydrological component, we find that varia-
tions in snow melt (r2 = 0.69) and re-calibrated TRMM-derived rain-
fall (r2 = 0.64) are captured well (Fig. 16A and B). We also find an
inverse correlation (r2 = 0.59) between the observed winter snow-
fall, which is represented by snow melt (Fig. 16B), and the glacier
melt during the subsequent summer (Fig. 16C). In other words, when
winter snowfall is high, glacier melting during the following sum-
mer is low. The varying time spans of annual snow cover on glaciers
and thus the variation in the glacier melt duration explains 86%

of the annual variations in glacier melt. Thus, winter snowfall on
glaciers contributes not only to glacial accumulation but also influ-
ences glacial ablation, as prolonged snow cover shields glaciers from
radiative heating in the subsequent summer season [101]. The mod-
eled annual variations in glacial ablation agree with ablation stake
measurements of the nearby Chhota Shigri Glacier, which reveal sig-
nificant decreases in glacier melt during 2005, 2009, and 2010 [5].
Our modeled mean specific ablation rates for the entire Sutlej catch-
ment based on the glacier melt contribution to river discharge and
the glacial surface area (1761 km2) vary considerably between 2000
and 2012 with mean summer mass balance of −1.33 ± 0.35 m/yr.

Differences in temperature and precipitation in the western Hi-
malaya were particularly high between 2004 and 2005. Low snow-
and rainfall occurred in conjunction with high temperatures in 2004,
whereas high snow- and rainfall accompanied low temperatures in
2005 (Fig. 17). As a result river discharge in 2004 was almost half
the volume as of 2005. However, the low runoff from snow melt and
rainfall in 2004 was extenuated by high glacier melt rates (17.3%), fa-
vored by high temperatures and a longer melting period due to low
snow cover on glaciers (Fig. 17).

6. Discussion

6.1. Limits of the hydrological model

Due to the remoteness and climatic variability of the Sutlej Val-
ley it is difficult to model its hydrology based on sparse ground-
station coverage alone. Therefore, we based our hydrological model
on calibrated remote-sensing data, which we validated with a unique
ground-station dataset. Despite our use of remote-sensing data with
high spatial and temporal resolution, several shortcomings of the in-
put data and the model setup warrant attention when interpreting
the results:

First, our modeling approach is deliberately simple to rule out un-
known parameters that are difficult to constrain. We neglected re-
freezing of snow and ice melt, sublimation of snow and ice, losses
to the groundwater system by deep seepage, turbulent energy ex-
change (e.g., rain on snow events), and transient water storage in
soils and vegetation. The latter may be of lower importance in
the upstream parts of our study area, because vegetation cover is
only pertinent in the lower-elevation regions of the catchment area
(Fig. S1). However, larger discrepancies between observed and mod-
eled river discharge at the lowermost gauging station at Bhakra
(Fig. 16D) potentially derive from lacking soil–water storage, espe-
cially during exceptionally warm and dry years with high soil in-
filtration rates as occurred in 2004. The effect of neglecting the
aforementioned processes is difficult to estimate as relevant data
on their implications on river discharge in the Himalaya is largely
missing.

Second, there exists a trade-off in the TRMM 3B42 precipita-
tion product between high temporal (3 h) but low spatial resolution
(30 × 30 km2). Consequently, TRMM 3B42 would not capture high-
spatial variability of monsoonal rainfall that could result from small-
scale convection, for example. However, the high sampling rate is cru-
cial to detect the occurrence of convective monsoonal rainstorms that
have short lifetimes of half an hour to several hours and small spatial
footprints of a few to several dozen km2 [10]. Overall, we find that
in those areas where annual rainfall is generally high (> 0.7 m/yr),
TRMM 3B42 performs reasonably well compared to the ground based
measurements, whereas it performs poor in areas where annual
rainfall is lower (<= 0.7 m/yr). However, because the contribution
of rainfall as compared to snow and ice melt to river discharge is
much lower in the latter areas, we still obtain reasonable model
results.

Third, the air temperature data that drive the thermal snow and
glacier melt module are based on MODIS LST data, which we scaled
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Fig. 14. (A) Mean annual snow melt (October 2001–September 2012) in the western Himalaya based on average snow melt factors of srfs = 0.04 mm W−1 m2 day−1 and

tfs = 2 mm °C−1 day−1 (B) 270-km wide swath profile across the western Himalaya showing the average distribution of snow melt along with elevation (± 1σ ) and a 5-km

radius relief (± 1σ ).

Fig. 15. (A) Mean daily runoff of stacked hydrologic components for the Sutlej River (2000–2012) at Bhakra, Wangtoo and Namgia gauging stations (cf. Fig. 1). Mean catchment-

wide snow melt elevation (± 1σ ) increases to above 5000 m asl during the summer months. (B) Mean monthly percentages to total runoff as shown in A.

by linear regressions with air temperature records from five weather
stations. Despite the large altitudinal range of 2880 m among these
stations, the relationship between air and surface temperatures may
vary at higher elevations and in regions with contrasting land cover
and radiation fluxes. This complexity may affect high-elevation low-
relief region that experience high radiative heating during summer,
but it presumably has a low impact on snow-covered areas and there-
fore snow melt.

Fourth, our shortwave-radiation and temperature factors for snow
and ice melt (Eqs. (2) and ( 3)) are temporally constant but vary sys-

tematically between catchments as they decrease with increasing
mean catchment elevation. These variations result from our model
optimization process and might be related to the following causes:
(1) sublimation of snow and ice increases with elevation, which re-
duces the energy available for melt and thus lowers the correspond-
ing melt factors [59]; (2) losses to the groundwater system by deep
seepage are likely to increase with increasing catchment areas at
higher elevations; and (3) larger discrepancies between actual and
modeled temperatures at higher elevations may similarly affect melt
factors to compensate for increased melt rates.
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Fig. 16. Comparison of inter-annual variations in observed and simulated hydrological

components within the Sutlej Valley. (A) Normalized mean annual rainfall records of

23 weather stations versus the modeled mean annual runoff from effective rainfall. (B)

Normalized mean annual SWE records of 15 weather stations (2001–2008) versus the

modeled mean annual snow melt runoff. (C) Normalized mean annual glacier melt pe-

riod based on MODIS snow-cover data on glaciers versus modeled mean annual glacier

melt runoff. (D) Observed river discharge versus modeled river discharge for the Sutlej

River at Bhakra. The simulated runoff components in A, B, and C add up to the simu-

lated river discharge in D.

Fig. 17. (A) Mean annual temperature deviations in Kalpa (Fig. 1) from the average

temperature of 10.44 °C between 2000 and 2012. (B) Observed mean annual river dis-

charge divided in its runoff components effective rainfall, snow melt, and glacier melt

based on the hydrological modeling results for the Sutlej River at Bhakra. White num-

bers indicate the relative runoff contribution to the annual river discharge in %.

6.2. Benefits and limits of remote sensing data in hydrological models

Based on our modeling results and previous studies on remote
sensing products we aim to evaluate the benefits and limits of re-
mote sensing data in hydrological modeling studies. In this study we
used different remote sensing products that are based on different
wavelengths of the electromagnetic spectrum ranging from (1) re-
flected solar radiation for snow, cloud, and glacial cover as well as

evapotranspiration via (2) thermal infrared emissions for land sur-
face temperature data to (3) reflected microwave radiation data for
rainfall rate estimates. Remote sensing observations bear the poten-
tial to detect the spatial and temporal variability of hydrometeoro-
logical states (e.g. snow cover) and fluxes (e.g. rainfall rate) with an
associated uncertainty [90]. These ambiguities derive from varying
surface and atmospheric conditions, as well as specific sensor char-
acteristics and data processing methods [28]. Consequently, remote
sensing data need to be evaluated based on ground observations to
verify their specific and general applicability in hydrologic models.

In general, satellite data can be highly beneficial in mountainous
or remote regions with sparse ground observations and/or a high
spatial variability in the state or flux of interest. In most instances
the value of remote sensing data for hydrological models depends
on its ability to detect the spatial and temporal variability of hy-
drometeorological states and fluxes. For example, glacier outlines
are characterized by relatively low temporal variations and can be
mapped accurately with sensors of high spatial resolution (e.g. Land-
sat) if challenges like debris, snow, and cloud cover can be addressed
[35]. Similarly, moderate snow cover and albedo changes in space and
time can be depicted accurately with sensors of high temporal reso-
lution (e.g. MODIS, AVHRR) [47,76]. In contrast, convective monsoonal
rainstorms have a relatively short lifetime, which makes it challeng-
ing to detect their magnitude and spatial distribution with repetitive
snapshots from space (e.g. TRMM) [102]. Therefore, ground-based
rainfall records are highly advantageous to calibrate remote sensing
data on regional scales [46]. Overall, satellite-based precipitation
products can significantly improve hydrologic investigations in areas
with sparse weather station records [74]. Conversely, a dense net-
work of rainfall records is likely to outperform satellite-based rainfall
estimates, as indicated by the model performance comparison in the
Baspa catchment (Table 5). Similarly, we estimated cloud-cover frac-
tion based on two measurements per day (i.e. MODIS Aqua and Terra),
which can be improved by including additional cloud-cover obser-
vations during the daytime. Another challenge for snow and glacier
melt models is to accurately infer air temperatures in complex terrain
[66]. We compared three approaches to compute air temperatures,
which comprise: (1) seasonally constant lapse rate, (2) seasonally
varying lapse rate, and (3) MODIS LST scaling. Among these different
air temperature interpolation methods, we find the highest accura-
cies for the second and third approach. Presumably, a remote sensing
based approach to infer air temperatures outperforms a varying lapse
rate approach on regional scales (>10,000 km2) with few weather
stations, whereas the latter approach is likely to be more suitable
on smaller scales (<1000 km2) with multiple station records. In
summary, it depends on the specific data availability if ground based,
spaceborne, or combined observations are most suitable to map out
the spatial and temporal variability of the state or flux of interest.

6.3. Comparison with previous studies

Previously, Bookhagen and Burbank [18] and Singh and Jain [96]
modeled the hydrological budget of the Sutlej River using different
approaches. Bookhagen and Burbank [18] modeled mean monthly
river discharge, based on TRMM 2B31 data to derive rainfall quan-
tities and MODIS data to model snowmelt and evapotranspiration.
Their study indicates a snowmelt and rainfall contributions of 57%
and 43%, respectively [18]. Singh and Jain [96] modeled daily Sut-
lej River discharge for six years between 1988 and 1999 based on
isothets from ten rainfall stations to estimate rainfall quantities and
snow cover data derived from Landsat MSS and IRS LISS-I data to
model snow melt in different elevation zones. Their estimate of 68%
snowmelt and 32% rainfall contributions to the Sutlej River discharge,
on average, is constrained to the Indian part of the Sutlej River
basin [96]. Considering the different modeling approaches, model
input data, spatial and temporal scales, and target areas it is not
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surprising that our results (55% effective rainfall, 35% snow melt, 10%
glacier melt) deviate from the latter study.

Our estimate of average glacial ablation in the Sutlej catch-
ment (1.33 ± 0.35 m/yr) and average range of snow accumulation
(0−1.4 m/yr water equivalent) are well within range of glacier mass
balances estimates of −0.15 to −0.75 m/yr in the region [5,14,56,105].
Immerzeel et al. [50] estimated similar precipitation magnitudes (1–
2 m/yr) in regions > 4000 m asl in the Hunza catchment of the
Karakorum based on glacier mass balance models. Moreover, we re-
calibrated TRMM 3B42 rainfall estimates with measurement from
more than 80 weather station, which further compare well with river
discharge magnitudes (Table 5). In addition, our melt parameters are
in general agreement with parameters used by Pellicciotti et al. [78],
although a direct comparison of model parameters is generally ham-
pered by a deviating modeling approaches and varying geographic or
climatic influences.

7. Conclusion

In this study, we provide a comprehensive analysis of hydrologic
components and their contribution to daily Sutlej River discharge,
based on a simple hydrological model that uses calibrated remote-
sensing data. Model performance was improved by (1) filling cloud
cover gaps in the fractional snow cover data, as well as identifying
cloud pixels misclassified as snow, and correcting for viewing angle
artifacts, (2) scaling MODIS surface temperatures to observed air tem-
peratures, (3) incorporating daily fractional cloud cover data in the
net radiation balance, and by (4) calibrating rainfall estimates based
on TRMM 3B42 data with data from 84 weather stations. Calibrating
the rainfall data is particularly relevant in the Sutlej catchment as the
TRMM 3B42 data moderately well depicts rainfall in humid frontal
regions of the Himalaya within 6% mismatch of the mean monthly
weather station records, but significantly overestimates weather sta-
tion rainfall by a factor of 2–5 in the orogenic interior (elevations
> 2000 m asl). This bias follows an inverse power–law relationship
with mean annual precipitation and suggests that TRMM 3B42 per-
forms poorly in semi-arid to arid regions of high relief and elevation.

Based on our modeling results, the average annual Sutlej River
discharge at the mountain front (Sutlej River at Bhakra) is sourced
to ∼55% by effective rainfall, ∼35% by snow melt, and ∼10% by
glacier melt. The discharge components vary strongly by season with
snow melt dominating (63%) the pre-monsoon season (April–June)
whereas the summer season from July to September is dominated by
rainfall (61%), followed by snow (24%) and glacier melt (15%). Thus,
transient water storage in ice and snow is an important source for
discharge in the Sutlej River. Peak discharges and daily variations are
usually controlled by rainfall events, which increases the importance
of transiently stored water sources to continuous downstream wa-
ter supply. This water storage is key for maintaining hydropower and
agriculture in the downstream areas of the Sutlej River.

Snow and glacier melt contributions to discharge in the western
Himalaya is highest near the main Himalayan crest, about 100 km in-
wards from the mountain front (Fig. 14). Downstream or windward
of the main Himalayan crest, rainfall contribution becomes more im-
portant during both the winter and summer seasons. Pronounced
inter-annual variations in winter snowfall also affect glacier melt, as
the snow-cover duration controls radiation influx during the subse-
quent summer season. Based on our model, the average glacier melt
in the Sutlej Valley between 2001 and 2012 has a water equivalent
of 1.33 ± 0.35 m/yr, averaged over an ice-covered area of 1761 km2.
The importance of glacier melt to balance river discharge variability
and to countervail low precipitation runoff was particularly notice-
able during the exceptionally warm and dry year 2004. Under sce-
narios of future climate change, including higher temperatures, rising
snowlines and declining glaciers, the decadal-time scale discharge of

the Sutlej River is likely to become more variable and reduced, espe-
cially in the high-elevation internal parts of the orogen.
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