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1982, 1987, and 1997. (3) The clustering characteristics of 
the obtained climate networks qualitatively agree with the 
spatial distribution of connected regions with simultaneous 
events (i.e., events that occur at the same time), but provide 
a more detailed view on the spatial organization of strong 
atmospheric upwelling events. Interestingly, no comparable 
results are found for negative extremes of moisture diver-
gence (strong precipitation events).
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1 Introduction

During the past decade, complex networks have become a 
powerful tool for the analysis of climate time series (Tsonis 
and Roebber 2004; Tsonis et al. 2007; Yamasaki et al. 
2008; Donges et al. 2009b; Malik et al. 2012; Steinhaeuser 
et al. 2012; Berezin et al. 2012; Boers et al. 2013; Stein-
haeuser and Tsonis 2014), resulting in the popular climate 
network (CN) approach. Recent achievements particularly 
include novel insights into the global impact and spati-
otemporal organization of the El Niño Southern Oscillation 
(ENSO) (Yamasaki et al. 2008; Tsonis and Swanson 2008), 
which have lead to a novel strategy for anticipating positive 
ENSO (El Niño) events (Ludescher et al. 2013) as well as 
discriminating between different types of positive and pos-
sibly also negative ENSO (La Niña) events (Radebach et al. 
2013).

At a regional scale, the spatial patterns exhibited by vari-
ous complex network measures based on the temporal syn-
chronization between extreme rainfall events have been found 
to reveal the most important features of the South American 

Abstract We investigate the temporal evolution of mois-
ture divergence and its spatial clustering properties over 
South America. Our analysis focuses on dependencies on 
the phase of the El Niño Southern Oscillation (ENSO). 
Moisture divergence is computed from daily reanaly-
sis data of vertically integrated moisture flux provided by 
Modern-Era Retrospective Analysis for Research and 
Applications for the time period from 1979 to 2010. We 
use a sliding-window approach to construct a sequence of 
complex networks, each obtained from synchronization of 
events of strong positive (negative) moisture divergence, 
which we interpret as strong evapotranspiration (precipi-
tation) events. We make the following three key observa-
tions: (1) Moisture divergence values over the Amazon 
rainforest are typically higher during positive ENSO peri-
ods (El Niño events). (2) The spatial coherence of strong 
positive (upwelling) events assumes a characteristic pattern 
of reduced coherence in this area during El Niño condi-
tions. This influence of ENSO on moisture divergence and 
its spatial coherence is dominated by the El Niño events of 
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Monsoon System (Boers et al. 2013). These include the main 
moisture pathways, their interplay with orography [orographic 
rainfall, (Bookhagen and Strecker 2008)], the main conver-
gence zones, and areas with frequent thunderstorm devel-
opment. Specifically, Boers et al. (2013) have documented 
that frequent occurrences of squall lines (Garreaud and Wal-
lace 1997) and Mesoscale Convective System (Durkee et al. 
2009; Durkee and Mote 2010) lead to high values of the local 
clustering coefficient in the resulting CNs. Notably, since the 
probability of two grid cells to exhibit a high degree of inter-
dependence typically decays with their distance (Donges et al. 
2009b; Radebach et al. 2013), high local clustering coeffi-
cients in CNs based on the synchronization of events indicate 
that extreme events in the corresponding region occur in a 
spatially coherent manner. Similar results have been obtained 
recently for the Indian summer monsoon (Malik et al. 2012), 
underlining the large potential of regional CN analysis.

In this work, we analyze strong positive and negative 
values (above the 90th percentile and below the 10th per-
centile) of the daily divergence of vertically integrated 
moisture flux. Positive moisture divergence, in simple 
terms, can be viewed as upward moisture transport from 
the surface to the atmosphere, for example caused by evap-
otranspiration; in contrast, negative moisture divergence 
corresponds to downward movement of moisture from 
the atmosphere to the surface in form of precipitation. We 
investigate the dependence of the associated spatial patterns 
on the ENSO phase, with a focus on the spatial coherence 
and large-scale organization of events. For this purpose, we 
use a sliding-window approach and construct CNs based 
on event synchronization [ES, cf. (Malik et al. 2010, 2012; 
Boers et al. 2013; Quiroga et al. 2002)] for time intervals 
of 365 days in steps of 60 days. We analyze the temporal 
evolution of local and global clustering coefficients of these 
CNs, and compare it to ENSO variability.

For comparison and in order to look at the resulting spa-
tial patterns from a different viewpoint, we also compute the 
average size of connected regions of simultaneous events. 
Here, simultaneous means that events occur at the very 
same day, as opposed to synchronized, where we allow for 
a maximum delay of ±5 days between associated events. 
This approach provides a rather intuitive and direct way to 
analyze the spatial coherence of strong vertical moisture 
fluxes and adds quantitative information on the typical spa-
tial extensions of simultaneous events in a given region. It 
can be understood as a more traditional approach to analyze 
spatial coherence, complementary to the CN approach.

2  Data

We employ daily data of vertically integrated moisture 
flux from NASA’s Modern-Era Retrospective Analysis for 

Research and Applications [MERRA, see (Rienecker et al. 
2011)], with temporal coverage from 1979 to 2010 for the 
region between 15◦N and 40◦S, and 30◦W and 85◦W, at a 
latitudinal resolution of 1/2◦ and longitudinal resolution of 
2/3◦.

Divergence of this flux was calculated using finite differ-
ences. Denoting vertically integrated atmospheric moisture 
content (i.e., precipitable water) by A, divergence of verti-
cally integrated moisture flux by M, precipitation by P, and 
evapotranspiration by E, the water balance equation reads

We emphasize that E and P are never negative. A positive 
extreme of M in a given grid cell can in principle be caused 
by two different effects: A sudden decrease of moisture 
inflow from neighboring grid cells, or an extreme event 
of E. In the former case, the neighboring grid cells can-
not have a positive extreme event of M at the same time 
step, while in the latter case extreme events should typi-
cally occur spatially homogeneously. Therefore, if positive 
extreme events of M occur in a spatially homogeneous way, 
i.e., as part of large connected components of simultane-
ous positive extreme events, the former effect can be dis-
missed. As we will demonstrate in the course of this work 
(see Fig. 11 below), positive extreme events of M occur 
in fact spatially homogeneously, which allows to interpret 
these events as extreme events of E. On the other hand, by 
the same rationale, negative extrema of M typically lead to 
extreme events of P.

While spatial clustering of strong rainfall events has a 
straightforward interpretation in terms of thunderstorms and 
large convective systems and has been discussed elsewhere 
for South America (e.g., Boers et al. 2013), to our knowledge 
the spatial coherence of strong evapotranspiration events has 
not been discussed so far. This may be due to the fact that a 
climatological interpretation is not as simple as in the case 
of precipitation, since evapotranspiration is considered to be 
controlled by regional and local conditions. Here, we argue 
that factors influencing evapotranspiration rates, such as 
solar radiation, temperature, and wind, can indeed act coher-
ently on rather large spatial scales and thus lead to interre-
lations of evapotranspiration time series at remote locations. 
We observe that evapotranspiration exhibits an event-like 
structure, i.e., short time periods during which values are 
much higher than during the remaining times (Fig. 1).

A particular focus of the following analysis will be 
on the Amazon Basin. In this area, evapotranspiration by 
dense vegetation cover and high biomass amounts—in 
combination with southwestward and westward propagat-
ing convective storm systems from the Atlantic Ocean—
yield an important contribution to overall positive moisture 
divergence (Lean and Warrilow 1989; Shukla et al. 1990; 
Eltahir and Bras 1993).

(1)∂tA + M = E − P.
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For the ENSO signal, we use the monthly multivariate 
ENSO index [MEI,1 (cf. Wolter and Timlin 1993, 1998)]. It 
is based on the six variables sea-level pressure, zonal and 
meridional surface wind components, sea and air surface 
temperature, and total cloud fraction. MEI is therefore con-
sidered a more reliable estimator of the ENSO state than 
indices like NINO 3.4 (based solely on sea surface temper-
atures) or SOI (based on sea-level pressure) (Rasmusson 
and Carpenter 1982; Trenberth 1997; Trenberth and Stepa-
niak 2001). Time intervals for which MEI is larger than +1 
(smaller than −1) are considered to be warm, i.e., El Niño 
(cold, i.e., La Niña) episodes, while the remaining periods 
will be referred to as neutral.

3  Methods

3.1  Climate network: generation

In order to investigate the temporal evolution of the cluster-
ing characteristics of the obtained CNs, we choose a slid-
ing window approach. We construct CNs from time slices 
with a length of 365 days in steps of 60 days (∼2 months), 
resulting in 195 time steps for the entire period between 
1979 and 2010. Out of these, 38 fall into El Niño phases 
and 21 into La Niña phases. We first transform the data 
for each of these time slices and at each grid point into an 
evapotranspiration (precipitation) event series by consider-
ing those days as events for which M is among the highest 

1 Retrieved from https://climatedataguide.ucar.edu/climate-data/mul-
tivariate-enso-index.

(lowest) 10 % of all values for that location and time inter-
val, resulting in 36 events for each time slice. We note that, 
since the percentiles are computed for each grid cell and 
time step, the corresponding event thresholds vary in space 
and time.

In order to construct a network from the obtained event 
series, we consider an event-based measure of similarity 
to decide whether or not two time series (i.e., CN nodes) 
are sufficiently similar to be connected by a CN link. For 
this purpose, we employ ES, defined as follows Malik et al. 
(2012), Boers et al. (2013), Quiroga et al. (2002): Suppose 
we have two event series {eµ

i }1≤µ≤l and {eν
j }1≤ν≤l with l 

events at grid points i and j, where eµ
i  denotes the timing of 

the µth event observed at grid point i. In our case, we con-
sider l = 36 events for all grid points and each time interval. 
In order to decide if two events eµ

i  and eν
j  can be uniquely 

assigned to each other, we compute for d
µ,ν
ij := |e

µ
i − eν

j | 
(i.e., the waiting time between two events)

To exclude unreasonably long delays between events at 
different locations, we introduce a maximum delay of 
τmax = 5 days. If d

µ,ν
ij ≤ τ

µν
ij  and d

µ,ν
ij < τmax, we count 

this as synchronous events:

Note that if the respective threshold is exceeded for subse-
quent time steps, this will be considered as several distinct 
events. However, due to definition (2), at most one of these 
events will synchronize with the events identified at other 
grid points.

ES between ei and ej is then measured in terms of the 
normalized sum of all Sµν

ij  (for fixed i and j):

Since Sµν
ii = δµν (i.e., Sµν

ii = 1 iff µ = ν and 0 otherwise) 
due to (2), we have Qii = 1 by definition.

A CN is obtained by thresholding Q at the 95th percen-
tile, resulting in a link density of 5 %. The CN’s adjacency 
matrix is thus given by

where Θ is the Heaviside “function”, θ = Q0.95 denotes 
the threshold on Q, and Kronecker’s δ appears in order to 
exclude self loops. In this way, we construct t = 195 CNs 
for time spans of 365 days, in steps of 60 days. We find that 
all event synchronization values that are represented by CN 
links through this procedure are significant (p value <0.05) 
with respect to a null model based on uniformly placing 36 

(2)τ
µν
ij = min

{d
µ,µ−1
ii , d

µ,µ+1
ii , dν,ν−1

jj , dν,ν+1
jj }

2
.

(3)S
µν
ij =

{

1 iff d
µ,ν
ij ≤ τ

µν
ij and d

µ,ν
ij ≤ τmax ,

0 else.

(4)Qij :=

∑

µν S
µν
ij

l
.

(5)Aij = Θ(Qij − θ) − δij,

Fig. 1  Example of a daily time series of moisture divergence for 
1979 at 5°S, 60°W, and the corresponding thresholds at the 10th 
(dashed) and the 90th percentile (solid). Positive values indicate net 
evapotranspiration, while negative values indicate net precipitation
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events (highest respectively lowest 10 %) in a time series of 
365 days at random.

3.2  Climate network: analysis

By construction, clustering characteristics of synchronized 
evapotranspiration and precipitation events are encoded 
in the topology of the CNs constructed in the manner 
described above. Topological properties of CNs can be 
quantified by suitable CN measures. The first measure we 
consider here is the local clustering coefficient (LC):

 LCi gives the relative frequency of network neighbors 
of i that are themselves connected. Since the probabil-
ity of a network link between two grid cells decays with 
their geographical distance (Donges et al. 2009b), a con-
nected region with high local clustering coefficients will 
be a region of large spatial coherence: Strong events in 
regions of continuously high local clustering coefficients 
are expected to typically all occur close in time (within 
τmax = 5 days), while low local clustering coefficients indi-
cate more erratic and spatially incoherent behavior. This 
is in agreement with an earlier study of spatial patterns of 
CNs from extreme precipitation (Boers et al. 2013).

The global clustering coefficient (GC) is defined as the 
arithmetic mean of local clustering coefficients taken over 
the entire network:

where N is the number of nodes. Therefore, it gives an 
estimate of the overall tendency towards spatially coherent 
evapotranspiration or precipitation regimes.

3.3  Connected regions of simultaneous extremes

Complementarily to the CN approach, we also investigate 
the spatial patterns of the average size (measured as the num-
ber of grid cells) of spatially connected regions of simultane-
ous events (SC). Here, two grid cells are considered spatially 
connected if they are longitudinally, latitudinally, or diago-
nally adjacent in space. We first look for each day µ in a 
given time window (of length 365 days) for the Nµ spatially 
connected components {Cµ

m}1≤m≤Nµ of grid cells at which 
events occur at that day. Then, we assign to each grid cell the 
value of the size of the component it belongs to:

(6)LCi :=

∑

j<k AijAjkAik
∑

j<k AijAik
.

(7)GC :=
1

N

N
∑

i=1

∑

j<k AijAjkAik
∑

j<k AijAik
=

1

N

N
∑

i=1

LCi,

(8)
S

µ
i =

∑

{C
µ
m}

δC
µ
m
(i)|Cµ

m|,

where |Cµ
m| denotes the cardinality of Cµ

m and δC
µ
m
(i) = 1 if 

i ∈ C
µ
m and δC

µ
m
(i) = 0 otherwise. Finally, we average S

µ
i  

over all days µ for which Sµ
i > 0,

where in our case t′ = 36 days. Since the actual size 
of horizontal grid cells depends on the latitudinal posi-
tion, we correct the values of SC by weighting them with  
cos(!), where ! denotes the latitudinal angle ranging from 
40◦S to 15◦N.

3.4  Pattern analysis

The time evolution of CN’s global clustering properties (GC) 
can be directly compared to ENSO variability. For LC, we 
obtain a vector of dimension N (the number of grid points) 
for each time interval. But apart from the temporal evolution 
of the overall mean of this vector (i.e., GC), we are interested 
in a more detailed analysis of how the spatial patterns change 
during time evolution. For this purpose, we first compute 
Spearman’s rank correlation coefficients between the ENSO 
signal and the time series of LC at each location.

Complementarily, we investigate the time evolution of 
spatial patterns of LC by means of pattern similarity anal-
ysis. For this purpose, we first compute the spatial ranks 
RLC of all LC values for each time interval: For each time 
step µ, we have an N-dimensional vector LCµ, containing 
the values LC

µ
i  of the local clustering coefficient for the 

N geographical positions i. This array can be sorted with 
respect to these values. By “spatial ranks” (RLC), we refer 
to the position RLC

µ
i  (a number between 1 and N) of a 

given entry LC
µ
i  in that sorted array. We then calculate the 

L1-distance between the respective vectors RLCµ and RLCν 
obtained for all pairs of time intervals (µ, ν):

with space indices 1 ≤ i ≤ N for the number of grid cells 
(i.e., CN nodes), N = 9,324, and time indices 1 ≤ µ, ν ≤ t 
with t = 195. The column- (or row-) wise mean,

of the symmetric distance matrix L = (Lµν)1≤µ,ν≤t pro-
vides information on the dissimilarity of a spatial pattern 
observed in a given time interval in comparison with the 
patterns attained during all other intervals. Low values indi-
cate that the spatial patterns assume some characteristic 
structure at these times. Calculating ML for all times results 

(9)SCi =
1

t′

∑

{µ|S
µ
i ̸=0}

S
µ
i ,

(10)Lµν =

N
∑

i=1

|RLC
µ
i − RLCν

i |

(11)MLµ =
1

t

t
∑

ν=1

Lµν
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in another time series that can be compared to ENSO 
variability.

Finally, for LC and SC, we construct composites, i.e., 
we average the values at each location separately for warm 
(El Niño), neutral and cold (La Niña) stages of ENSO in 
order to obtain typical spatial patterns of these two meas-
ures for the three ENSO phases.

4  Results

4.1  Spatial patterns of moisture divergence

Regarding composites (i.e., spatial fields averaged over the 
respective time periods), we find that the strongest influence 
of ENSO on mean daily values of M (Fig. 2), as well as 
on the thresholds defining strong evapotranspiration (above 
the 90th percentile, Fig. 3) and precipitation (below the 10

th percentile, Fig. 4) events appears in a belt over the east-
ern and northern Amazon Basin and the adjacent coastal 
regions near the equator. Mean as well as strong evapotran-
spiration event thresholds increase in these regions during 
El Niño conditions, while strong precipitation event thresh-
olds show the opposite behavior: values decrease over the 
tropical Atlantic Ocean and the entire Amazon Basin. The 
La Plata Basin exhibits higher 90th percentiles and lower 

(i.e., more pronounced negative) 10th percentiles during El 
Niño conditions, whereas average values are not markedly 
different in this area during the different ENSO phases.

For a more detailed quantification of the impact of 
ENSO on M, we employ Spearman’s rank correlation coef-
ficient (SR) to analyze the interdependence between ENSO 
based on the MEI and each local value of mean, 90th 
(strong evapotranspiration) and 10th (strong precipitation) 
percentiles of M. We find correlation values between +0.3 
and +0.5 over the Amazon Basin and the tropical Atlantic 
Ocean close to the Brazilian coast for both mean values 
(Fig. 5a) and strong evapotranspiration events (Fig. 5b). 
In contrast, thresholds for strong precipitation events are 
negatively correlated with MEI (between −0.3 and −0.5)  
in this area (Fig. 5c).

Correlations between MEI and daily means of M are 
positive throughout eastern Brazil and negative in Uru-
guay and northeastern Argentina (58◦W, 32◦S). In contrast, 
for strong evapotranspiration event thresholds, there are 
negative correlations in easternmost Brazil, while positive 
correlations reach from southeastern Brazil to northern 
Argentina, covering the entire La Plata Basin. Correlations 
between MEI and the 10th percentiles are positive with val-
ues between +0.3 and +0.5 in the southern La Plata basin.

In addition, we observe positive correlation values in the 
hyper-arid Atacama desert in northern Chile as well as on 

Fig. 2  Composites of mean 
daily moisture divergence M for 
warm (a), neutral (b), and cold 
(c) ENSO conditions, and dif-
ference of composites for warm 
and neutral ENSO conditions 
(d). Note the increased values 
in northern South America and 
along the equator during El 
Niño conditions
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Fig. 3  Composites of 90th per-
centiles of moisture divergence 
M (corresponding to strong 
evapotranspiration events) for 
warm (a), neutral (b), and cold 
(c) ENSO conditions, and dif-
ference of composites for warm 
and neutral ENSO conditions 
(d). Note the increased values 
in northern South America and 
along the equator during El 
Niño conditions

Fig. 4  Composites of 10th per-
centiles of moisture divergence 
M (corresponding to strong 
precipitation events) for warm 
(a), neutral (b), and cold (c) 
ENSO conditions, and differ-
ence of composites for warm 
and neutral ENSO conditions 
(d). Note the decreased values 
in northern South America and 
along the equator during El 
Niño conditions



Impacts of ENSO on moisture divergence in South America

1 3

the adjacent Puna Plateau in northwestern Chile and south-
ern Bolivia for both daily means and strong evapotranspira-
tion event thresholds. In contrast, strong precipitation event 
thresholds are negatively correlated with ENSO in these 
regions.

4.2  Clustering of extreme moisture divergence: 
time-dependence

For strong evapotranspiration events, the distance matrix 
L (Fig. 6) obtained from the procedure described above 
exhibits reduced L1-distance values for a variety of time 
intervals. Most notably, there appear two blocks in L 
which have shorter mean distances among themselves 
as compared to patterns obtained from other time inter-
vals. These two blocks overlap between 1992 and 1998. 
The mean of L restricted to the time from 1979 to 1998 
is 2.45 × 107 with standard deviation 0.32 × 107, and 

2.44 × 107 with standard deviation 0.32 × 107 when 
restricted to the time from 1992 to 2012. For comparison, 
the mean of L between these two time periods (i.e., the 
mean of the block of L defined by 1998 ≤ µ ≤ 2012 and 
1979 ≤ ν ≤ 1991 is 2.57 × 107 with standard deviation 
0.06 × 107. For all times together, we obtain 2.50 × 107 
for the mean of L and 0.25 × 107 for the standard devia-
tion. For strong precipitation events, L does not show 
such a clear pattern (Fig. 7).

Fig. 5  Spearman’s rank correlation coefficient (SR) between the 
ENSO index MEI and mean (a), 90th percentiles (b), and 10th per-
centiles (c) of moisture divergence M. Note in particular the positive 
correlations between mean and 90th percentiles of moisture diver-
gence and MEI in northern South America, as well as the negative 
correlations in the same area for 10th percentiles

Fig. 6  L1-distance matrix L between the ranks of the local cluster-
ing coefficients (RLC) obtained for events above the 90th percentile 
(strong evapotranspiration events) for all time windows. Note the 
two time periods (1981–1998 and 1992–2009) with lower distances 
among themselves and higher distances to the respective other time 
period. The corresponding two blocks of L are indicated by dashed 
red lines

Fig. 7  L1-distance matrix L between the ranks of the local cluster-
ing coefficients (RLC) obtained for events below the 10th percentile 
(strong precipitation events) for all time windows
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From 1979 to 2005, for strong evapotranspiration events 
the row-wise mean of L (ML, Fig. 8B) tends to have its 
minima at times of positive ENSO conditions. Here, min-
ima correspond to the sequence of low values of L in Fig. 6.  
The row-wise mean of L is anti-correlated with MEI (Fig. 
8A) with SR(GC, MEI) = −0.47 (p value of the order of 
10−12). In contrast, for strong precipitation events, the row-
wise mean of L (Fig. 9B) does not show visual similarity to 
MEI, corresponding to low and non-significant correlation 
values.

The global clustering coefficient of the obtained CNs 
responds negatively to MEI, with SR(GC, MEI) = −0.48,  
for strong evapotranspiration events (Fig. 8C). The corre-
sponding p value, obtained from a two-sided t test, is of the 
order of 10−13. For strong precipitation events, no visual 
interdependence between MEI and GC can be observed 
(Fig. 9C). In accordance, the correlation is much weaker in 
this case (SR(GC, MEI) = −0.15 with p value p = 0.04).

Due to the weak interrelations between MEI and cluster-
ing properties obtained for strong precipitation events, we 
will focus on strong evapotranspiration events in the fol-
lowing sections.

4.3  Spatial patterns of clustering of extreme 
evapotranspiration events

Mean composites of LC (Fig. 10) show relatively high 
values over the Pacific Ocean between 10◦S and 30◦S, 
over the tropical Atlantic Ocean and the adjacent coast of 

northeastern Brazil, and over most of subtropical South 
America for all three ENSO stages. Relatively low values 
can be seen over the central Andes and eastern central Bra-
zil. Comparing the three different ENSO stages reveals that 
El Niño times are most notably characterized by decreased 
LC values over the entire Amazon Basin as compared to 
neutral and La Niña times.

For both positive and negative ENSO phases as well as 
neutral ENSO conditions, mean composites of the average 
size of connected regions of simultaneous events (SC, Fig. 
11) show high values over the subtropical Atlantic Ocean 
and the adjacent southeastern South American continent. 
However, during La Niña times, these high values reach 
farther north towards the western Amazon Basin. In con-
trast, during El Niño episodes the values of SC decrease in 
these regions, in particular over the Amazon Basin north of 
10◦S, when compared to the neutral ENSO stages.

5  Discussion

5.1  Impacts of ENSO cycles on moisture divergence

We observe that in the eastern and northern Amazon Basin, 
the distribution of M is generally shifted towards higher 
values during El Niño conditions (Figs. 2, 3). Given the 
results reported by other studies (Hastenrath and Heller 
1977; Ropelewski and Halpert 1987; Marengo et al. 2008; 
Bookhagen and Strecker 2010), we attribute this to negative 

Fig. 8  A ENSO index MEI, B 
row-wise mean (ML) of the L1

-distance matrix L between the 
ranks of the local clustering 
coefficients (RLC), and C time 
evolution of global clustering 
(GC) obtained for strong evapo-
transpiration events
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Fig. 9  As Fig. 8 for strong 
precipitation events

Fig. 10  Composites of the 
local clustering coefficient (LC) 
based on strong evapotranspira-
tion events for warm (a), neutral 
(b), and cold (c) ENSO condi-
tions, and difference of com-
posites for warm and neutral 
ENSO conditions (d). Note the 
reduced values over the central 
and western Amazon Basin for 
El Niño conditions
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precipitation anomalies in the northern and eastern Amazon 
Basin during warm ENSO phases. In the La Plata Basin, 
positive as well as negative extremes of M become more 
pronounced (Fig. 4), which indicates a general increase in 
variance (implying both stronger precipitation and evapo-
transpiration extremes) during El Niño events.

Negative correlation values between MEI and M in the 
La Plata Basin for daily means as well as positive cor-
relation values for the absolute values of 10th percentile 
thresholds are associated with positive precipitation anom-
alies in southeastern South America during El Niño events 
(Hastenrath and Heller 1977; Bookhagen and Strecker 
2010; Cazes-Boezio et al. 2003). However, this does not 
apply to the 90th percentile thresholds of M, for which, 
surprisingly, correlations are also positive over Uruguay. 
Thus, the entire distribution of M becomes wider during 
El Niño episodes, with stronger precipitation as well as 
stronger evapotranspiration events. These results may be 
relevant in view of the importance of the La Plata Basin 
concerning agriculture and hydropower generation (e.g., 
Barros et al. 2006).

Positive correlations between MEI and daily mean and 
strong evapotranspiration event thresholds of M as well as 
negative correlations between MEI and strong precipitation 
event thresholds in the Atacama Desert agree with earlier 
studies, which have found positive precipitation anoma-
lies during La Niña episodes (Houston 2006a) as well as 

positive evapotranspiration anomalies during El Niño epi-
sodes (Houston 2006b).

5.2  Impacts of ENSO cycles on clustering of moisture 
divergence

Since no clear and significant impacts of ENSO on the 
clustering characteristics of strong precipitation events 
were found in the MERRA data, we will again focus on 
strong evapotranspiration events in the following section.

The distance matrix L (Fig. 6) obtained from the proce-
dure described in Sect. 3 allows to identify times for which 
the spatial structures of LC resemble a specific character-
istic pattern, indicated by low values of Lµν. Specifically, 
such low values of appear during El Niño conditions, which 
is supported by negative correlations between MEI and the 
row-wise mean of L, i.e., ML (Fig. 8). This result indicates 
that during El Niño periods, LC assumes a characteristic 
spatial pattern which exhibits lower variability in terms 
of mutual L1-distances than for neutral and La Niña peri-
ods. The negative correlation between MEI and GC (Fig. 
6) implies that during El Niño phases the spatial pattern of 
synchronized evapotranspiration extremes is characterized 
by decreased GC. This is interpreted as an overall tendency 
towards diminished spatial coherence of strong evapotran-
spiration events during El Niño conditions. Mean compos-
ites of LC for the different ENSO periods (Fig. 10) reveal 

Fig. 11  As in Fig. 10 for the 
average size of connected 
components of simultane-
ous extremes (SC). Note the 
reduced values over the central 
and western Amazon Basin for 
El Niño conditions. Because the 
size of the horizontal grid cells 
varies depending on the latitu-
dinal position, the values of SC 
have been corrected by weight-
ing them with cos(!), where ! 
denotes the latitudinal angle
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that decreased values over the Amazon Basin are mainly 
responsible for this decline in GC.

Due to the interpretations of LC and SC (cf. Sect. 3), the 
results for SC are expected to be similar to those obtained 
for LC. Neglecting the influence of temporal lags, high val-
ues of LC computed from a CN based on ES should typi-
cally imply high values of SC as well, since the probability 
of link lengths in CNs typically decays roughly exponen-
tially with the spatial distance between two sites (Radebach 
et al. 2013; Donges et al. 2009a). For the case of surface air 
temperatures, this is reflected by the emergence of densely 
connected structures in CNs during some time intervals, 
most remarkably during El Niño and La Niña periods 
(Tsonis and Swanson 2008; Radebach et al. 2013; Paluš 
and Hartman 2011).

Consistent with these expectations, the mean compos-
ites of SC (Fig. 11) indeed reveal a reduced average size of 
connected components of simultaneous evapotranspiration 
events over the Amazon Basin during warm ENSO phases 
as compared to neutral and cold periods. The implications 
are thus qualitatively the same as for LC, although the 
obtained patterns of SC exhibit less spatial variability and 
are in this sense less informative than those of LC. How-
ever, the consistency between the results of LC and SC pro-
vides further support of the drawn conclusions.

For strong events of evapotranspiration, we have found 
a clear block structure in the L1-distance matrix L between 
the LC patterns for different time intervals (Fig. 6). This is 
expressed by a relatively high degree of similarity of LC 
patterns within the periods 1979–1998 as well as 1992–
2012 (with a mean L1-distance of 2.45 × 107), while the 
L1-distance of LC patterns between these two periods is 
relatively high (on average 2.57 × 107). The appearance 
of these two blocks in L may indicate a possible transition 
from one climate “state” to another one (characterized by 
a somewhat different typical clustering pattern of extreme 
evapotranspiration events) during the mid 1990s. In fact, 
another recent study Meehl et al. (2011) suggested a shift 
from El Niño dominated decades lasting until 1998 to a La 
Niña dominated period during the last 15 years, which is 
consistent with our finding. Specifically, the mean value of 
MEI for the time period from 1979 to 1998 is +0.54, while 
the mean value of MEI for the years from 1992 to 2011 is 
+0.19 (−0.12 for the years from 1998 to 2011). Recently, 
this shift was suggested as a possible explanation of the 
non-increasing global mean temperature in the last 15 years 
by the cooling effect of the Pacific Ocean during colder 
ENSO conditions (Kosaka and Xie 2013).

5.3  Different types of El Niño events

During the last years, several studies have reported evi-
dence for a multi-phase nature of ENSO with at least two 

qualitatively different types of El Niño events (Ashok 
et al. 2007; Yeh et al. 2009; Hendon et al. 2009; Kim et al. 
2011; Hu et al. 2012). However, we note that the assign-
ment of El Niño events to these two subclasses is not 
fully consistent in the literature and partly depends on 
the chosen ENSO index. We suggest that a more detailed 
discrimination of ENSO phases allows deeper insights 
into the spatiotemporal organization of vertical moisture 
flux extremes. Here, we resolve the above results with 
respect to the two types of El Niño events and divide all 
El Niño events into the following two subclasses: Nino1, 
consisting of the particularly strong classical El Niño 
events in 1982, 1987, and 1997, and Nino2, consisting 
of the anomalous events in 1986, 1990/1991, 1993/1994, 
2002, and 2004 (Hendon et al. 2009). We remark that in 
Hu et al. (2012), the El Niño event of 1987 is - in con-
trast to our assignment and (Yeh et al. 2009; Hendon et al. 
2009; Kim et al. 2011)—taken to be an anomalous El Niño 
(i.e., Nino2) event. The classical El Niño (Nino1) is also 
referred to as eastern Pacific El Niño, while the anoma-
lous El Niño (Nino2) is also called central Pacific El Niño, 
or El Niño Modoki (Ashok et al. 2007; Yeh et al. 2009). 
Nino2 is characterized by positive sea surface temperature 
(SST) anomalies in the central Pacific Ocean, but rela-
tively cool SSTs to the east and west, while during (clas-
sical) Nino1 conditions, the SST maximum is located in 
the eastern Pacific Ocean. Furthermore, the two types of 
El Niño differ in their teleconnection patterns between the 
tropics and midlatitudes. The frequency of Nino2 episodes 
has increased during recent decades, possibly because of 
weakened tropical easterly winds (Ashok et al. 2007; Yeh 
et al. 2009). For a detailed analysis of the distinct impacts 
of Nino1 and Nino2 on precipitation over South America, 
we refer to Hill et al. (2009, 2011), Tedeschi et al. (2013), 
while Li et al. (2011) investigate the general impact on the 
climate of the Amazon Basin.

Constructing composites of means (Fig. 12) and 90th 
percentiles (Fig. 13) of moisture divergence as well as 
LC (Fig. 14) for these two types separately, we find that 
the impact of El Niño events on these three fields is 
mainly due to the classical type (Nino1), which shows 
much stronger deviations from neutral ENSO conditions 
than the anomalous type (Nino2). We thus infer that pro-
nounced SST anomalies in the eastern Pacific ocean con-
tribute much stronger to the described impacts of ENSO 
on moisture divergence than SST anomalies in the central 
Pacific ocean. This is consistent with results in Radebach 
et al. (2013), where distinctively different expressions in 
the properties of networks constructed from global sur-
face air temperatures were found for the two El Niño 
types. In particular, the impact of El Niño events on GC 
was also mainly assigned to classical El Niño events in 
that study.
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6  Conclusion

We have shown that magnitudes as well as spatial cluster-
ing of strong evapotranspiration events over South America 
are strongly affected by the phase of the ENSO. The strong-
est impacts of ENSO were found over the Amazon Basin, 
which is particularly important since this region is known 
to host globally relevant and particularly vulnerable eco-
systems (Davidson et al. 2012). Specifically, the Amazon 
rainforest is believed to be one potential tipping element of 
the Earth’s global climate system (Lenton et al. 2008).

We make the following key observations: (1) The mag-
nitudes of moisture divergence respond positively to ENSO 
variability (indicating negative precipitation anomalies) in 
the Amazon Basin with highest values during El Niño peri-
ods. (2) The network-derived local clustering of extreme 
positive events of moisture divergence is reduced in a 
characteristic way during El Niño events in the Amazon 
Basin. This indicates reduced spatial coherence of synchro-
nized extreme evapotranspiration events in this region. We 
find that the described dependence on ENSO variability is 

mainly due to the three major (classical) El Niño events in 
1982, 1987, and 1997, while all other events (in particular 
the anomalous Modoki events) play a minor role. A shift 
in ENSO activity during the late 1990’s from warmer (El 
Niño) to cooler (La Niña) predominant conditions reported 
by others Meehl et al. (2011) is reflected by a shift in the 
pattern similarity of the CN’s local clustering coefficients 
computed for extreme positive events of moisture diver-
gence. (3) We find that our results obtained from complex 
network theory are consistent with, but more detailed than 
results obtained from a direct estimation of the spatial 
coherence of events.

We emphasize that these results were only found for the 
complex network analysis of extreme positive moisture 
divergence (i.e., evaotranspiration) events, and no corre-
sponding significant results were found for extreme nega-
tive moisture divergence (i.e. precipitation) events.

From a conceptual perspective, our results underline the 
important role of complex network approaches as versa-
tile tools for studying the spatiotemporal dynamics of the 
Earth’s climate system on both global and regional scales. 

Fig. 12  Composites of mean daily moisture divergence (M) for El 
Niño events of type Nino1 (a), Nino2 (b), and difference between 
Nino1 and Nino2 (c)

Fig. 13  Composites of 90th percentile thresholds of daily moisture 
divergence (M) for El Niño events of type Nino1 (a), Nino2 (b), and 
difference between Nino1 and Nino2 (c)
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Besides providing information that cannot be obtained 
using classical methods originated in multivariate statistics 
(e.g., principal component analysis), the network param-
eters considered in this work are based on graph neigh-
borhoods and can therefore be computed with moderate 
numerical efforts. In future work, we plan to analyze the 
impacts of La Niña episodes in more detail, as in this study 
we mainly focussed on the influence of El Niño episodes. 
As methodological refinement of the approach used in this 
study, we outline the explicit consideration of boundary 
effects on network properties (Rheinwalt et al. 2012) and 
heterogeneous distances between grid points on the sphere 
(Radebach et al. 2013) in future work.
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