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Monsoonal rainfall in the Himalaya dominates erosion and sediment transport
through the fluvial system. In addition to the strong seasonal nature of the Indian
summer monsoon, striking interannual variations in monsoonal strength
characterize longer records. For example, during any given year, rain may
penetrate further into the orogen, even though peak rainfall amounts almost
always occur at topographic barriers in regions with high relief, regardless of
overall monsoonal strength. Tropical Rainfall Measurement Mission (TRMM)
product 3B42 rainfall is first used to document the spatial rainfall distribution and
then the TRMM time series are used to identify temporal and seasonal rainfall
variations. A simple, but robust magnitude-frequency relation for each rainfall
pixel is used to show that rainfall greater or equal to the 90th percentile occurs at
least twice as often in mountainous terrain as in low-elevation regions. Previous
field-based observations and measurements show that this significantly higher
number of extreme events leads to higher erosion volumes and greater fluvial-
mass transport rates. The spatiotemporal context of these extreme events helps to
predict occurrences of high sediment flux and could underpin the strategic
development of preventative measures. Improved statistics for extreme events are
key to mitigating the filling of hydropower reservoirs and abrasion of hydropower
turbines, as well as to sustaining infrastructure and successful agriculture in the
downstream section of the Himalaya.

1. Introduction

Short-lived extreme weather events exert control on mass-transport processes and,
hence, profoundly impact the character and rates of surface erosion processes (e.g.
Baker and Kale 1998, Coppus and Imeson 2002, Hartshorn ez al. 2002, Dadson et al.
2003, Snyder et al. 2003, Bookhagen et al. 2005a, Lague et al. 2005). In the
Himalaya, interannual variations in the strength of the Indian summer monsoon
strongly influence sediment flux and river discharge to the foreland (e.g. Sah and
Mazari 1998, Paul et al. 2000, Barnard et al. 2001, Gabet et al. 2004, Bookhagen
et al. 2005a, Singh et al. 2007). During large floods, as well as during abnormally wet
monsoon years with elevated rainfall, large sediment volumes are transported
through the fluvial system and transiently stored in the low-gradient reaches before
ultimately reaching the oceans (e.g. Goodbred 2003). The rate of sediment transport
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within the hydrologic cycle impacts both a diverse ecosystem and a population of
more than 1 billion people (Ives and Messerli 1989, Stern 2007).

Flooding in the mountainous Himalaya and adjacent low-relief areas can be
attributed mainly to two causes: (1) heavy or extreme rainfall events associated with
synoptic climatic patterns; and (2) artificial and natural dam bursts. Both processes
lead to a sudden increase of water overwhelming the fluvial system and increasing the
fluvial transport capacity. Flood prediction related to extreme rainfall events is
difficult because forecasting abilities of monsoonal rainfall are limited. Although the
aberrant behaviour of the Indian monsoon is well documented, its characteristics
and nature are not yet fully understood (e.g. Charles et al. 1997, Krishnamurthy and
Shukla 2000, Gadgil et al. 2003, Kulkarni ez al. 2009, Singh et al. 2009, Wulf ez al. in
press). Because both local factors and global teleconnections influence monsoon
strength, a successful prediction of the Indian monsoon season is commonly deemed
to be almost impossible (e.g. Webster 1987, Webster et al. 1998, Francis and Gadgil
2009, Rahman et al. 2009). In particular, rainfall observation and prediction in
remote, high mountain terrains need to be improved. Coupled with extreme climatic
events are mass-transport events, such as those triggered by excess rainfall amounts.
A better assessment of the connection between these processes is desirable, but often
difficult to achieve due to the lack of adequate monitoring possibilities.

The second flooding cause is catastrophic dam bursts often associated with glacial
lake outburst floods (GLOFs) in the Himalaya (e.g. Richardson and Reynolds 2000,
Kattelmann 2003, Meyer et al. 2006, Bajracharya ez al. 2007). However, landslide
lake outburst floods (LLOFSs) are equally important and have a similar destructive
nature (e.g. Shang et al. 2003, Dunning et al. 2006, Gupta and Sah 2008). In many
cases, the formation of a lake and its rate of growth in remote, mountainous regions
can be observed with repeated satellite imagery (e.g. Kdidb and Vollmer 2000, Kédidb
2002, Quincey et al. 2005, Bolch et al. 2008, Leprince et al. 2008, Scherler et al. 2008).
If appropriate observations and warning mechanisms are in place, disasters can be
avoided (e.g. Richardson and Reynolds 2000, Stern 2007, Korup and Clague 2009,
Stone 2009). Today, post-flood identification is possible with multispectral satellite-
or aerial-image analysis in the Himalaya. However, relating erosion processes with
climatic triggering factors and developing a quantitative understanding of system
response (the Earth’s surface) to forcing magnitudes (rainfall amounts) requires
different datasets and approaches.

In this study, rainfall data are utilized from the Tropical Rainfall Measurement
Mission (TRMM) satellite, a joint mission between the US National Aeronautics
and Space Administration (NASA) and the Japanese Aerospace Exploration Agency
(JAXA). These data, recorded at 3-h intervals allow the identification of extreme
events and their spatiotemporal context. Whereas these data cover only the last 11
years (1998-2008), several distinctive rainfall patterns help to delincate general
relationships between rainfall, topographic relief and extreme-rainfall events. With
this analysis, extreme events are not attempted to be predicted, but rather provide a
framework for likely times and locations of extreme events.

This study falls in line with recently emerging discussions about varying
magnitudes and discrepancies of climate change in the Himalaya (e.g. Cruz et al.
2007, Bhutiyani et al. 2008, Bagla 2009, Krishnamurthy ez al. 2009, Raina 2009). The
spatial asynchrony of climate change in the Himalaya is depicted by this regional
analysis: climatic forcing throughout the Himalaya is not similar, as the Asian
monsoon is a dynamic system tightly coupled to global teleconnections that change
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their magnitudes at varying timescales (e.g. Webster 1987, Clemens et al. 1991,
Clemens et al. 1996, Zhisheng et al. 2001, Anderson et al. 2002, Fleitmann et al.
2003, Gupta er al. 2003, Rahman et al. 2009). Thus, part of the difficulty in
prediction is related to the different climatic-forcing time scales and time lags in
system response to the observed processes. Previous publications have highlighted
the impact of past, intensified monsoon phases that have significantly altered the
Earth’s surface by enhanced moisture transport into the orogen (e.g. Pratt et al.
2002, Clemens and Prell 2003, Staubwasser et al. 2003, Bookhagen et al. 2006, Clift
et al. 2008, Owen et al. 2008, Dortch et al. 2009). For example, during the early
Holocene an intensified monsoon period lasting roughly from 9 to 6 ka, moisture
penetrated further into the orogen and entered regions that were previously and are
arid today. This moisture increase most likely removed transiently stored sediments
in the valley and led to the formation of large, deep-seated bedrock landslides that
left a strong geomorphic imprint on the landscape (e.g. Gasse et al. 1991, Goodbred
and Kuehl 2000, Bookhagen et al. 2005b, Dortch et al. 2009).

2. Methodology
2.1 Tropical Rainfall Measurement Mission (TRMM ) rainfall

Tropical Rainfall Measurement Mission (TRMM) product 3B42 is used for analysis
(Huffman et al. 2007). The data come in a gridded format with a spatial resolution of
0.25° x 0.25° (~30 km x 30 km) and a temporal resolution of 3 h. Data access
and detailed algorithm information are available on the web (http://disc.sci.gsfc.
nasa.gov/precipitation/documentation/TRMM_README/TRMM_3B42_readme.
shtml/). In short, input for the 3B42 dataset comes from two main sources: first,
sensors onboard several low-earth-orbit satellites measuring indicators related to
hydrometeors that ultimately result in surface precipitation. These sensors are the
TRMM Microwave Imager (TMI), Special Sensor Microwave Imager (SSM/I),
Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR) and
Advanced Microwave Sounding Unit-B (AMSU). Second, data from a geosynchro-
nous satellite in the infrared spectrum are calibrated with the low-Earth-orbit
satellites to provide high temporal observations of large parts of the Earth. In a final
step, these datasets are combined through continuously improved and re-calibrated
algorithms (Huffman et al. 2007).

Several studies suggest that the TRMM 3B42 surface-rainfall rate is comparable
to the other surface observation (e.g. Koo er al. 2009, Sapiano and Arkin 2009),
although the spatial scale of the rainfall data makes direct comparison to gauge data
difficult. In addition, it has been argued that the TRMM 3B42 product is useful for
creating a global landslide-hazard assessment (e.g. Hong et al. 2006).

2.2 Spatiotemporal rainfall analysis

The gridded dataset was used to create a rainfall climatology for the Himalaya and
adjacent regions (figure 1). Mean annual and daily rainfall were calculated based on
the 3-h measurement intervals over the time period from January 1998 to December
2008 (11 years). For all spatiotemporal analyses, daily rainfall amounts have been
used as integrated from the 3-h data. Each gridded data cell or pixel in the landscape
is treated separately to account for the local rainfall-intensity history. The
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Figure 1. Topographic overview of the Himalayan and adjacent mountain ranges.
International borders are outlined in grey. Western and eastern regions along the southern
Himalayan front are characterized by a one-step topography. In contrast, the central
Himalaya is characterized by a two-step topography that results in two distinctive rainfall
peaks (cf. figure 7). White stars denote locations used in figure 2 to demonstrate extreme-
rainfall determination using the 90th percentile as a lower limit.

probability density function was calculated for each pixel based on the 11-year
measurement period to identify the 90th percentile (figure 2). That is, the rainfall
time series was used to identify the occurrences (probabilities) of daily rainfall
magnitudes. Rainfall in the 90th percentile has been previously associated with
extreme rainfall events (e.g. Cayan et al. 1999, Grimm and Tedeschi 2009,
Krishnamurthy et al. 2009). In other words, every rainfall event above the 90th
percentile is defined as an extreme event. In a final step, the number of days per
season that exceed the 90th percentile was counted. This count thus results in the
number of extreme-rainfall days. For this study, the 90th-percentile rainfall based on
the summer months (May—October) was calculated to demonstrate the importance
of the Indian monsoon and to avoid the steep seasonal gradient.

3. Results

My analysis shows several important features: first, there exist two main rainfall
gradients in the Himalayan realm (figure 3(«)): an approximately five-fold east-to-
west gradient related to the distance from the moisture source (Bay of Bengal) and a
ten-fold south-to-north rainfall gradient reaching from the monsoon-soaked Ganges
Plain to the arid Tibetan Plateau that lies in the lee of the Himalayan orographic
barrier. Second, mean daily summer (May-October) monsoon rainfall on the
Ganges Plain ranges from 10 to more than 20 mm day ' south of the Shillong
Plateau (figure 3(b)). The Tibetan Plateau receives overall less than 5 mm day !
rainfall, with significantly drier western areas. Third, summer (May—October)
monsoon rainfall provides more than 80% of the annual moisture budget for large
parts of the Ganges Plain and central Himalaya (figure 4). Far western and eastern
areas receive lower rainfall amounts during the summer and thus their moisture
budget is dominated by the westerlies, primarily during winter or by the East Asian
monsoon. Fourth, my extreme rainfall analysis utilizing the 90th-percentile
methodology shows that extreme rainfall amounts mimic to some degree the
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Figure 2. Example for calculating 90th-percentile rainfall. (¢) Shows the TRMM 3B42 time
series for a location in the central Himalaya (see figure 1 with label 1 for location). The right-hand
panel shows probability density or number of occurrences in 1-mm day ' bins as taken from the
11-year time series. The 90th-percentile for the summer season (May—October) at this location is
24 mm day~'. (b) Displays a similar calculation for the Ganges Plain, which results in a 90th
percentile of 45 mm day ! during the summer season (see label 2 in figure 1). (¢) Time series and
probability density plot for the wettest inhabited place on Earth, the Shillong Plateau (see label 3
in figure 1). Note that the 90th percentile for the Shillong Plateau is more than twice as high as in
the mountainous central Himalaya.

annual rainfall distribution (see for example figures 3(¢) and 5). Note that the
wettest inhabited place on Earth, south of the Shillong Plateau, receives more than
50 mm day~' during an extreme rainfall event. Fifth, the number of extreme
rainfall days varies widely through the study region, but remains relatively constant
in mountainous terrain (figure 6). Despite the occurrence of higher extreme rainfall
amounts in the low-elevation regions (figure 5), the occurrence of extreme events is
nearly twice as high in mountainous terrain. In general, on the Ganges Plain there
are less than 10 extreme rainfall days during one summer season, whereas there are
more than 10 in the Himalaya. Mountain-peak areas are characterized by an even
higher number of extreme rainfall events during one season. Note that this
distribution is significantly decoupled from the overall rainfall pattern, as even
areas with overall lower rainfall magnitudes have similar numbers of extreme-
rainfall days.

4. Discussion

My rainfall data allow rainfall distribution in space and time to be deciphered. In
this section, previously published findings and results from a high-spatial resolution,
but low-temporal resolution rainfall dataset and field observations are summarized.
Then, the high temporal but low spatial TRMM 3B42 data are used to identify
temporal rainfall characteristics throughout the Himalaya.
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Figure 3. (a) Mean annual rainfall averaged over 11 years from 1998 to 2008 based on
TRMM 3B42 data (see text). () Mean daily rainfall for the summer season (May— October) is
derived from the same time series. The spatial resolution is 0.25° x 0.25° (~30 km x 30 km)
and the temporal resolution is 3 h. Note the two dominant rainfall gradients in the Himalayan
realm. First, an approximately five-fold east-to-west gradient reaching from the moisture
source, the Bay of Bengal, to the Northwest Himalaya. Second, a ten-fold south-to-north
gradient stretching from the monsoon-soaked Ganges Plains to the arid Tibetan Plateau that
lies in the lee of the Himalayan orographic barrier.

4.1 Spatial rainfall distribution

Previously, several authors and myself have used the high spatial resolution Tropical
Rainfall Measurement Mission (TRMM) rainfall product to analyse the impact of
topography and relief on rainfall distribution (Anders et al. 2006, Bookhagen and
Burbank 2006, in review, Bookhagen and Strecker 2008, Nesbitt and Anders 2009).
Bookhagen and Burbank (2006, in review) identified elongate, range-parallel zones
of high rainfall, and they demonstrated that topographic relief within a 3-km radius
is a robust indicator for the location of rainfall-peak occurrence. Topographic relief
is the difference between the minimum and maximum elevation within a given radius
(e.g. 3 km). The topography and relief relationship can be tested in the Himalaya,
because distinct topographic patterns exist (figure 1): the western and eastern
Himalaya are characterized by a ‘one-step’ topography with steadily rising elevation
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Figure 4. Summer monsoon rainfall as a percentage of annual rainfall amounts (from
TRMM 3B42, see text). Blue areas indicate regions that receive more than 80% of their annual
rainfall during the six summer months between May and October. Note that the far eastern
and western areas of the Himalaya receive significant rainfall during the winter months as well.
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Figure 5. 90th-percentile summer (May—October) rainfall amounts as deduced from the 11-
year TRMM 3B42 time series. The 90th percentile has been calculated only for the 6-month
period to focus on the importance of the Indian summer monsoon and to avoid the steep
seasonal rainfall gradient.

and a steep relief at the mountain front. In contrast, the central Himalaya is
characterized by a ‘two-step’ topography, with a first topographic rise that displays
moderate topographic relief associated with the geologic units of the Lesser
Himalaya. The second, more dominant relief increase is associated with the geologic
units of the Higher (or Greater) Himalaya, which also comprises the high Himalayan
mountain peaks. In both regions, an abrupt increase in relief is associated with a
rainfall peak.

Previous studies by Bookhagen and Burbank (2006, in review) show that the
integrated moisture transport into the orogen is roughly similar along strike, despite
a significantly different rainfall distribution (one versus two peaks) in the elevated
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terrain. The topography-relief-rainfall relation is conceptualized in figure 7. Note
that this synthesis does not allow prediction of a single storm (or rainfall event), but
rather provides a general view of rainfall distribution averaged over several seasons.
It is emphasized that the topography-rainfall relation can only be clearly delineated
with the high spatial resolution TRMM data (e.g. TRMM product 2A12 or 2B31).
In this study, we have used high temporal, but low spatial, resolution rainfall data to
create an entire rainfall time series and capture all rainfall events.

In the Himalaya, intense rainfall events are often associated with high sediment
fluxes (e.g. Paul et al. 2000, Barnard et al. 2001, Gabet et al. 2004, Bookhagen et al.
2005a, Wulf et al. in press). For example, in a previous study, Wulf ez al. (in press)

days exceeding 90th percentile (#) during |0 250 500 750 1,000
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Kilometers
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'-.

# of extreme days

Figure 6. Spatial distribution of number of days within the 90th-percentile rainfall. See figure
3 for rainfall amounts associated with the 90th percentile. For each approximately
30 km x 30 km pixel, the 90th percentile has been calculated separately. Note that the
mountainous Himalaya receive almost twice as many extreme rainfall days as compared to the
surrounding regions.
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Figure 7. Simplified topography rainfall relation from the western and eastern Himalaya (a)
and the central Himalaya (b) (see figure 1 for location details). Swaths are 50 km wide and
300 km long and were oriented perpendicular to the mountain front (Bookhagen and
Burbank, in review). Shown here are averaged rainfall, elevation, and topographic relief within
a 3-km radius along the profile for five profiles from each region. In general, rainfall-peak
location correlates well with the steepest change of topographic relief (i.e. the slope of the relief
distribution). Note that integrated rainfall amounts along a swath profile are roughly similar
along strike.
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showed that two extreme events lasting 5 days transported more than 50% of the
entire suspended sediment budget during a 5-year period. Their study also showed
that extreme rainfall events were associated with synoptic-scale climatic patterns that
propagated from the mountain front into the usually dry orogen interior.

In a related study, Bookhagen et al. (2005a) showed that, during an abnormally
strong monsoon year with extreme rainfall events, multiple debris flows and shallow
landslides were triggered at a regional scale in a similar environment. Both study
areas lie in the western Himalaya in the Baspa Valley, a transition zone between the
wet, monsoon-soaked ranges to the south and arid regions to the north. In terms of
the conceptualized topography-rainfall profile (figure 7), these regions lie on the
descending, northern limb of the northern rainfall peak. Studies in the Marsyandi
Valley in central Nepal provide similar results and suggest that the rainfall gradient
during storm events that drive erosive discharge is about half as large as the gradient
of seasonal rainfall (Gabet er al. 2004, 2008. Craddock et al. 2007).

This changing rainfall gradient during intense storms affects the region most
sensitive to erosion during extreme rainfall events: climatic transition zones that lie
just to the north of the rainfall peak. In these more arid, sparsely vegetated regions,
intense rainfall has an amplified impact on mass-transport processes. The growing
infrastructure and road construction in these areas will destabilize hillslopes even more
and will lower the triggering threshold for debris flows and shallow landsliding.
Moisture pathways into this region are provided by large valleys and low mountain
passes (Bookhagen er al. 2005a). In these semi-arid to arid parts of the landscape, a
large fraction of the total erosion appears to occur during these infrequent, but intense
rainfall events (e.g. Paul et al. 2000, Barnard et al. 2001, Wulf ef al. in press). This
pattern is in stark contrast to the continuously, monsoon-soaked frontal or rainfall-
peak regions, where rainfall of similar magnitude has a much lower erosional impact
because dense vegetation and thick soil cover act as dampening components.

Similar conceptual relations were already suggested by Wolman and Miller (1960)
in a semi-arid environment in the southwestern US. In order for the infrequent
rainfall events to be an effective erosion agent, the landscape including soil and
vegetation cover (often termed the ‘critical zone’) needs to be at its erosional
threshold. In other words, several geomorphic processes resulted for the landscape to
be in a sensitive state — voluminous erosional processes occur when a triggering
threshold is exceeded, for example through intense rainfall events. The Himalaya
and their steep rainfall gradient juxtapose a highly sensitive geomorphic threshold
zone right next or immediately downwind of monsoon soaked regions. The high
variability in monsoonal rainfall and its potential strengthening in the future
increases the likelihood of erosive events from a region that is undergoing cultural
development.

4.2 Temporal rainfall distribution

The seasonal rainfall map documents the spatial rainfall inhomogeneity during the
summer season (figure 4). Large inhomogeneities exist in the spatiotemporal rainfall
distribution in the Himalaya. The central Himalayan rainfall budget is dominated by
the Indian monsoon during the summer. For example, the percentage of annual rain
falling in the summer in Nepal and the central Ganges Plain is more than 80%
(figure 4). This conclusion, based on remotely sensed data, supports earlier findings
from rain-gauge stations located throughout India, but only sparsely distributed in
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the mountains (Parthasarathy er al. 1992). Clearly, these regions require different
hydrologic management than the neighbouring countries of India and Bhutan for
which snowmelt plays a more significant role (e.g. Bookhagen and Burbank in
review, Immerzeel et al. 2009).

My analysis shows for the first time that the eastern and western Himalaya receive
only 60-80% of their annual moisture during the summer season. The far western
Himalaya is more strongly influenced by the westerlies and receives less than 50% of
its annual moisture during the Indian monsoon. These regions are furthermore
characterized by high winter snowcover that results in snowmelt-runoff during the
spring (e.g., Bookhagen and Burbank in review, Immerzeel et al. 2009).

Despite strong seasonal rainfall gradients, the entire Himalaya receives similar
number of extreme rainfall days (figure 6). Even the generally drier NW Himalaya
and Karakoram regions have similar numbers of extreme events. Despite expected
data uncertainties, these along-strike similarities in event frequency are striking.

5. Conclusions

In this study, an analysis is provided of spatiotemporal rainfall distribution for the
Himalaya and Tibetan Plateau. A gridded high temporal, low spatial Tropical Rainfall
Measurement Mission (TRMM 3B42) dataset with 3-h sampling intervals at
0.25° x 0.25° (~30 km x 30 km) spacing was utilized. These data reveal three key
conclusions: first, in the central Himalaya and Ganges Plain more than 80% of the
annual rainfall occurs during the Indian summer monsoon (May—October). Far
western regions are influenced by the westerlies primarily. During the winter and
summer, rainfall in these regions accounts for less than 50% of the total annual
budget. Second, the spatial distribution of extreme rainfall events exceeding the 90th
percentile is decoupled from the annual or seasonal rainfall distribution. In general,
the mountainous Himalaya has almost twice as many extreme events as the Ganges
Plain or the Tibetan Plateau, regardless of the rainfall amounts. Third, extreme events
are more common in the dry interior rather than the wet exterior of the orogen. This
important finding suggests the location of profound surface erosion to be in the lee of
the orographic barrier where barren landscapes are susceptible to intense rainstorms.
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