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A B S T R A C T

Synthetic Aperture Radar (SAR) amplitude measurements from spaceborne sensors are sensitive to surface
roughness conditions near their radar wavelength. These backscatter signals are often exploited to assess the
roughness of plowed agricultural fields and water surfaces, and less so to complex, heterogeneous geological
surfaces. The bedload of mixed sand- and gravel-bed rivers can be considered a mixture of smooth (compacted
sand) and rough (gravel) surfaces. Here, we assess backscatter gradients over a large high-mountain alluvial
river in the eastern Central Andes with aerially exposed sand and gravel bedload using X-band TerraSAR-X/
TanDEM-X, C-band Sentinel-1, and L-band ALOS-2 PALSAR-2 radar scenes. In a first step, we present theory and
hypotheses regarding radar response to an alluvial channel bed. We test our hypotheses by comparing back-
scatter responses over vegetation-free endmember surfaces from inside and outside of the active channel-bed
area. We then develop methods to extract smoothed backscatter gradients downstream along the channel using
kernel density estimates. In a final step, the local variability of sand-dominated patches is analyzed using Fourier
frequency analysis, by fitting stretched-exponential and power-law regression models to the 2-D power spectrum
of backscatter amplitude. We find a large range in backscatter depending on the heterogeneity of contiguous
smooth- and rough-patches of bedload material. The SAR amplitude signal responds primarily to the fraction of
smooth-sand bedload, but is further modified by gravel elements. The sensitivity to gravel is more apparent in
longer wavelength L-band radar, whereas C- and X-band is sensitive only to sand variability. Because the spatial
extent of smooth sand patches in our study area is typically< 50 m, only higher resolution sensors (e.g.,
TerraSAR-X/TanDEM-X) are useful for power spectrum analysis. Our results show the potential for mapping
sand-gravel transitions and local geomorphic complexity in alluvial rivers with aerially exposed bedload using
SAR amplitude.

1. Introduction

High-mountain rivers act as the drains of orogenic belts by trans-
porting eroded rock material from hillslopes downstream as detritus in
mixed sand and gravel bedload. The characteristics of this sediment,
and the geological deposits they form, hold keys to deciphering drivers
of mountain building and erosion (e.g., Strecker et al., 2007; Attal et al.,
2015; Dingle et al., 2017). Variation in bedload quantity and grain-size
distributions control channel geometry over decadal to millennial
timescales (e.g., Sklar et al., 2006; Pfeiffer et al., 2017). This bedload
has implications for ecological management (e.g., Kondolf and
Wolman, 1993) and provides essential nutrients for agriculture in
floodplains. In turn, the impact of human infrastructure on rivers can
lead to significant changes in sediment flux (Syvitski et al., 2005) and
bedload characteristics (Grant, 2012), with far-reaching implications

(Walter and Merritts, 2008).
As rivers flow downstream, they pass through tectono-geomorphic

zones created by the geological, climate, and vegetation settings along
with the drainage network connections (e.g., Rice and Church, 1998;
Church, 2002; Attal and Lavé, 2006). These zones cause heterogeneous
mixtures of sand and gravel bedload, herein referred to as sand-gravel
patchiness, which we define as discrete areas on the order of 1–100 m2

with similar bedload characteristics dominated by sand, gravel, or some
mixture of the two (e.g., Nelson et al., 2009). Low patchiness refers to
more mixing of sand and gravel and high patchiness refers to more
discrete sand- or gravel-dominated patches (e.g., sand or gravel bars).
The arrangement and size of mixed sand and gravel patches can vary
significantly over short distances both along- and across-channel,
making sampling characteristic grain sizes difficult via traditional
measures (e.g., Wolcott and Church, 1991). Digital grain-sizing
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techniques for high-mountain rivers are improving (e.g., Purinton and
Bookhagen, 2019a, 2019b), but capturing downstream evolution of
channel-bedload characteristics (Attal and Lavé, 2006) or gravel-sand
transitions (Dingle et al., 2017) at the scale of mountain belts remains
challenging.

Herein lies the utility of remote sensing with spaceborne platforms.
Specifically, the response of Synthetic Aperture Radar (SAR) back-
scatter intensity (the amplitude of returned signals) is modulated by a
combination of radar-look geometry, surface roughness, and soil-
moisture content of the surface (Ulaby et al., 1982; Farr, 1993).
Roughness, which dominates returns on unvegetated surfaces
(Dierking, 1999), is often defined as either the root mean square of
height variations (Hrms) and the auto-correlation length (L) within a
cell (e.g., Aubert et al., 2011), or, in some cases, as the power spectrum
slope and offset from cm-resolution 1-D surface profiles (e.g., Weeks
et al., 1996). Although neither method provides perfect characteriza-
tion of scale-dependent natural roughness (Shepard et al., 2001), em-
pirical and theoretical models between these parameters and SAR
backscatter have demonstrated positive relationships (e.g., Dierking,
1999).

Geologic surfaces have been investigated to a limited extent using
SAR in dry desert environments by modeling backscatter response to
roughness variations on gravely surfaces (e.g., Evans et al., 1992; Ridley

et al., 1996; Weeks et al., 1996, 1997), comparing backscatter intensity
with roughness or grain-size statistics (e.g., Deroin et al., 1997;
Campbell and Shepard, 1996; Campbell, 2001; Williams and Greeley,
2004), and inferring the age of alluvial fan surfaces from backscatter
variations (e.g., Farr and Chadwick, 1996; Hetz et al., 2016). However,
most recent radar backscatter research has focused on agricultural
settings to measure soil roughness and moisture (e.g., Baghdadi et al.,
2008, 2018; Rahman et al., 2008; Srivastava et al., 2009; Aubert et al.,
2011; Vreugdenhil et al., 2018). Within this, much work has gone into
the theoretical and empirical modeling of radar response to rough
surfaces in order to retrieve the soil-moisture signals of primary interest
to farming (e.g., Baghdadi and Zribi, 2006; Bryant et al., 2007; Verhoest
et al., 2008; Gorrab et al., 2015).

Few studies have applied SAR roughness measurements to fluvial
environments, and all have been limited to dry desert beds and sparse
observations (McCauley et al., 1982; Baade and Schmullius, 2010;
Sadeh et al., 2018). In this study, we apply radar backscatter mea-
surements for three radar wavelengths to measure downstream changes
in bedload grain size along a 115-km reach stretching from 4.5- to 1-km
elevation in the eastern Central Andes. The three sensors used are X-
band TerraSAR-X/TanDEM-X (TSX/TDX), C-band Sentinel-1A/B (S1),
and L-band ALOS-2 PALSAR-2 (ALOS2), with multilooked ground re-
solutions of 5, 15, and 15 m, respectively. Our results demonstrate that

Fig. 1. Comparing optical versus radar
data in the study area. The location is
indicated in Fig. 2A. (A) shows a Sen-
tinel-2 (S2) RGB composite (bands 2, 3,
and 4) with (B), (C), and (D) showing
the same 10-m resolution optical scene
overlain with 15-m resolution back-
scatter from S1 σvv0, S1 σvh0, and ALOS2
σhh0, respectively. (E) shows a SPOT7
panchromatic (PAN) gray-scale 1.5-m
image for the same area and in (F) the
corresponding 5-m TSX/TDX σhh0. All
dates are in YYYYMMDD format. The
channel (hand-clicked black outline),
flows from north to south. Calculation of
the backscatter coefficient (σ0) is de-
scribed in the Methods and data re-
pository. All color scales are from the
1st–99th percentile of backscatter values
in the framed channel area. We note
some visible differences in optical re-
flectance that could be exploited, but
point out that the information in the
SAR signal is more detailed, with lower
(more red) values indicating smoother
surfaces and higher (more blue) values
indicating rougher surfaces. (For inter-
pretation of the references to color in
this figure legend, the reader is referred
to the web version of this article.)
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different radar wavelengths and spatial resolutions are useful for de-
ciphering sub-pixel roughness and measuring the sand-gravel patchi-
ness of dynamic mountain rivers.

2. Optical versus radar data

Previous research has demonstrated the utility of spaceborne optical
data in assessing grain-size information from sub-pixel shadowing
(Weeks et al., 1996; Mushkin and Gillespie, 2005, 2006). In this study
we focus on radar imagery, because optical techniques are highly de-
pendent on lighting (sun angle) and atmospheric conditions (cloudi-
ness), and require two scenes gathered at the same time from different
angles (Mushkin and Gillespie, 2005, 2006). On the other hand, radar
data are capable of penetrating cloud cover and can retrieve backscatter
information at any time of day and using only one scene. Furthermore,
where shadowing is a correlative measure of surface roughness, radar
more directly measures the relative height of the surface from reflected
amplitude signals. However, radar backscatter data are influenced by
several parameters, including vegetation and soil moisture (e.g.,
Verhoest et al., 2008; Vreugdenhil et al., 2018), thus requiring caution
in analysis. The difference between optical and radar data in terms of
response contrast over an alluvial channel bed is demonstrated in Fig. 1.
Theory behind the observed SAR amplitude response is provided in the
next section.

3. Expected SAR amplitude response to channel bed

We consider the mixture of sand and gravel in a dry riverbed as a
mix of two endmembers: smooth (sandy) and rough (gravely) surface.
The Rayleigh criterion of electromagnetic interaction with surfaces
places the smooth-rough transition at approximately λ/(8∗ cos (θi)),
where λ is the radar wavelength and θi is the local incidence angle of
the wave (Farr, 1993). Where surface roughness is significantly below
the radar wavelength, the radar signal reflects off the surface away from
the sensor (specular reflection) leading to low backscatter intensity
measured (e.g., on compacted sand or calm water bodies). As roughness
increases to the scale of the wavelength (e.g., contiguous gravel pat-
ches), increasing radiation is scattered back towards the sensor (diffuse
reflection) with a nonlinear relationship up to a grain-size plateau be-
yond which increasing roughness leads to little change in back-
scattering (i.e., the surface is “saturated”; Campbell and Shepard,
1996). Peake and Oliver (1971) defined two cutoffs for radar-smooth
and radar-rough geologic surfaces as λ/(25∗ cos (θi)) and λ/
(4.4∗ cos (θi)), respectively. These criteria are useful references for
expected transitional behavior of the SAR amplitude signal on gravely
surfaces (McCauley et al., 1982).

From such considerations we can form hypotheses of SAR response
to a patchy sand-gravel riverbed surface at various wavelengths. Since a
single spaceborne SAR measurement (e.g., ~5 × 20 m in range × azi-
muth for S1) may contain a variety of smooth and rough surfaces, we
can assume that the backscatter will represent a mixture of specular and
diffuse reflections. More sand leads to a more specular, lower intensity
reflection and increasing gravel (and arrangement of those gravels in
contiguous patches) tends towards a more diffuse, higher intensity re-
flection. For higher ground resolutions (e.g., ~2 × 2 m in
range × azimuth for TSX/TDX) there may be less mixing of sand and
gravel in the smaller area allowing for a greater range in amplitude as
opposed to more mixed signals from coarser pixels, but this depends on
the radar wavelength and the patchiness scale (i.e., the size of con-
tiguous sand- or gravel-dominated bars). In some cases, a single strong
scatterer (i.e., a large boulder) in the measurement can cause a strong
double-bounce effect from reflection off smoother surfaces amplified
strongly by large objects (e.g., Evans et al., 1986; Campbell, 2001),
which can dominate the backscatter signal.

Assuming an ~30° incidence angle for SAR imagery in X-band
(λ=3.1 cm), C-band (λ=5.6 cm), and L-band (λ=22.9 cm), the radar-

smooth and rough thresholds — for X-, C-, and L-band, respectively —
are 0.1 and 0.8 cm, 0.3 and 1.5 cm, and 1.1 and 6.0 cm. Aside from fine-
gravel or sand-only surfaces, a riverbed tends to have height variations
above 1 cm. Therefore, X-band will be sensitive to only changes in re-
lative sand-covered surface area, and the inclusion of gravels in the
measured area will lead to rapid signal saturation. On the other hand,
C-band may still show some sensitivity to gravel inclusion with a rough-
surface threshold of 1.5 cm, although it will primarily respond to the
presence or absence of sand-dominated patches. Only the longest wa-
velength L-band should show sensitivity to a large range in grain
sizes< 6 cm, and is therefore most useful for tracking changes in
pebble size along a channel.

In a highly active channel bed with little to no vegetation, the only
factors influencing backscatter should be roughness and moisture. Soil
moisture is known to cause an increase in backscatter intensity (e.g.,
Verhoest et al., 2008; Gorrab et al., 2015; Bousbih et al., 2017) up to
very wet conditions (> 30% moisture), where the relationship has been
shown to decrease (Baghdadi et al., 2008). These relationships are from
fine-sand and silty soils where water retention is much higher than for
granular sand- and gravel-bedded alluvial channels in drier high-
mountain environments. Some studies exist on the penetration of radar
into loose, dry sand many meters thick on desert dunes (e.g., McCauley
et al., 1982; Williams and Greeley, 2004), but we are less concerned
with this issue in channel beds where the sand is less dry, compacted to
smooth surfaces, and does not reach thickness above ~1 m. In a channel
bed where the sand is interspersed with frequent pebbles, this pene-
tration will be reduced even more, thus limiting any moisture effects
from the deeper water table. These moisture effects may become more
important in channel reaches where higher flows are more common and
the channel bed is not consistently aerially exposed. The water surface
of higher flows may contribute to backscattering in two contrasting
ways: (a) a smooth water surface decreases backscatter via specular
reflection; and (b) turbid water with high suspended sediment loads
and a rough surface increases backscatter via diffuse reflection.

Regarding the effect of SAR polarization, we expect the cross-po-
larized bands (e.g., vertical-horizontal, or VH, for S1) to exhibit a si-
milar, although lower magnitude, response to gravely and sandy sur-
faces compared to co-polarized bands (e.g., vertical-vertical, or VV, for
S1). It has been previously demonstrated that cross-polarized SAR is
most useful for tracking vegetation changes, which cause modulation of
the polarization by volume-scattering (e.g., Vreugdenhil et al., 2018).
These effects are limited in low-vegetation braided alluvial channels.
Given these considerations, we focus our analysis on the co-polarized
SAR bands, which should exhibit similar horizontal-horizontal (HH) or
VV responses, as the gravel elements cause intensity scattering in both
the vertical and horizontal directions.

4. Study area

Previous fieldwork in the Toro Basin of northwest Argentina (Fig. 2)
includes: cosmogenic radionuclide measurements of geomorphic rates
(Bookhagen and Strecker, 2012; Tofelde et al., 2017), historical record-
based estimation of modern hydroclimatic regimes (Castino et al.,
2016b), detailed differential GPS surveying (Purinton and Bookhagen,
2017), bedload transport observation and remote sensing measurement
(Purinton and Bookhagen, 2018), and channel-bed cross-section photo
surveying (Purinton and Bookhagen, 2019a). We have chosen the Río
Toro as our study site given the high variability and dynamic nature of
the channel demonstrated in these studies. This previous work and field
observations over many years provide a detailed framework to assess
SAR response to roughness variations in this river. Finally, the data
available for X-band (TSX/TDX) and L-band (ALOS2) in the present
study were restricted to the Toro Basin (see SAR footprints in Fig. 2A).

The Río Toro flows approximately north to south through a steep
environmental, topographic, and rainfall gradient from the upper
reaches (~3 km elevation) bordering the hyper-arid (rainfall < 0.2 m/
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yr), internally drained Altiplano-Puna Plateau (Allmendinger et al.,
1997; Bookhagen and Strecker, 2008), down through a zone of large
Quaternary fill-terraces (Tofelde et al., 2017), then a narrow bedrock
gorge (Hilley and Strecker, 2005), and out through the orographic
barrier at the mountain front (rainfall > 1 m/yr), before passing
through the Lerma Valley (~1 km elevation). The topographic, cli-
matic, and environmental zones are captured in profile-view along the
channel in Fig. 3, showing: rainfall; hillslope and active channel Nor-
malized Difference Vegetation Index (NDVI); and channel-bed slope
and width. The active channel is defined by a hand-clicked outline on
high-spatial resolution imagery of the low- to non-vegetated channel
bed, often constrained by steep valley walls, where bankfull or lower
discharge events continuously rearrange bedload. The hillslope area is a
buffered region bracketing the active channel 100 m from both banks
and 100-m wide on either side of the channel where vegetation is
present, water level rarely reaches, and hillslope transport processes
dominate.

Within the braided gravel-bedded active channel, high-intensity
rainfall events, particularly during the summer monsoon season
(Castino et al., 2016a, 2016b, 2017), lead to flooding and bedload
transport between longer periods of low-flow and bedload aerial ex-
posure. Vegetation in the active channel is limited because of the high
bedload transport (Purinton and Bookhagen, 2018), although in the
more arid, but low-slope, upstream reaches there are some scattered
(~2–10 m separated), low (~0.5–1.5 m tall) bushes in the channel,
which cause local increases in NDVI (Fig. 3B).

The characteristics of the Río Toro are shown with the inset field
photos P1–8 in Fig. 3A. The upstream reach contains many smooth
sandy surfaces (P8) transitioning to highly mixed sand and gravel sur-
faces over the majority of the studied reach (P3–7). Over most of the
channel, there are few large (> 1 m) boulders, and a typically uniform
distribution of< 50-cm clasts mixed with sandy patches dominates.
Downstream of the mountain front the water surface may locally cover

a large proportion of the channel bed (P2) with an armored surface,
possibly related to anthropogenic gravel mining (Purinton and
Bookhagen, 2018), occurring in some locations as sand is more easily
transported during the higher flow periods. These intermittent higher
flows are caused by orographic rainfall (Bookhagen and Strecker, 2008)
and, to a lesser extent, diurnal variation in groundwater levels.

The aerial photos in Fig. 4 show a typical channel reach upstream of
the mountain front, making a few things about the setting apparent.
Firstly, the water surface typically accounts for< 5–10% of the
channel-bed width. The remaining aerially exposed bed quickly dries
during sunshine hours in the high-elevation subtropical catchment after
infrequent storms clear the mountain-front barrier (i.e., the gravel
surfaces are dry to the touch shortly after rainfall, and thus moisture
content is expected to have low impact on SAR backscatter). These
photos also show that gravel and sand patches in the active channel
generally have low anisotropy (i.e., there are few elongated pure sand-
or gravel-dominated bars), with the channel-bed instead showing
highly mixed sand and gravel patches with frequent changes in the
grain-size distribution over<~10-m distances. High anisotropy of
sand and gravel arrangements would exist where along-channel elon-
gated bars of either all gravel or all sand were present, but this is less
common in the Río Toro, likely because the steep setting and high
delivery of tributary and hillslope (e.g., landslide) material leads to
high across-stream sediment transport rates and a more chaotic ar-
rangement.

5. Methods

We processed the SAR images to reduce sensor noise, correct for
terrain distortion, and provide logarithmic amplitude measurements in
units of dB on coincident rasters with the final spatial resolution de-
termined by the raw sensor resolution. We are interested in exploiting
differences in backscatter amplitude along the channel to measure

Fig. 2. Overview of the study area. (A) shows the topography of the Toro Basin (thick black outline) in northwest Argentina near Salta, bordering the internally
drained Altiplano-Puna Plateau (thick white outline) of the Central Andes. The Río Toro main-stem measurement area (profiled in Fig. 3) is highlighted by the thick
blue line, and representative SAR footprints used in this study are shown with orange (descending) and red (ascending) polygons, with the scene azimuth (satellite
travel direction) and range (satellite look direction) arrows indicated. The elevation, hillshade, and drainage network is derived from SRTM data (Jarvis et al., 2008).
(B) shows the mean annual rainfall over 12 years from the Tropical Rainfall Measurement Mission (TRMM2B31; Bookhagen and Strecker, 2008) to highlight the steep
environmental gradient from the arid, sparsely vegetated upper Toro to the humid, vegetated foreland, with orographic moisture blocking indicated by the light
(west) versus dark (east) color difference at the mountain front running from south to north. The locations of tectono-geomorphic transitions along the channel are
indicated by dashed black lines with the numbers (1–5) used in subsequent plots. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
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tectono-geomorphic transitions (1–5) correspond to Fig. 2B. Inset field photos P1–8 in (A) show the nature of the sand and gravel arrangement in the active channel
(flow direction given by blue arrow). Note the steepening of the channel downstream of (4) where the Gólgota fault (Marrett et al., 1994) crosses the channel and
creates a broad knickzone leading into a high-relief bedrock gorge, where many small tributaries and steep hillslopes deliver material with a large range in grain size
to the channel bed, such as the debris-flow fan at (3). Following the confluence of the large tributary at (2), where the gorge ends, the channel shallows and widens.
Shallowing and widening increase downstream of the mountain front at (1) and out into the foreland, with corresponding increases in rainfall and vegetation (mostly
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the web version of this article.)
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Fig. 4. Pictures of the Río Toro (flow direction given by blue arrow) upstream of the mountain front captured with an unmanned aerial vehicle (UAV) at the same
location as P4 in Fig. 3. (A) shows an oblique view and (B) shows a top-down view with the location indicated in (A). The pictures were captured with one-year
separation, leading to some differences in the channel bed, but the main flow path (river-water surface) remained stable in this period. Some cloud buildup can be
seen in the distance in (A) at the mountain front, but note the clear skies upstream, where the intense sunshine dries previously wetted channel bed and causes low
moisture away from flowing water. The water surface is narrow with respect to the wide, dry active channel bed. Elongated sand- or gravel-dominated bars are
sometimes present, but there are frequent changes in the grain-size distribution over short distances and generally well-mixed gravel and sand arrangements at
scales> 10 m. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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changes in surface roughness related to sub-pixel sand and gravel ar-
rangements affecting specular to diffuse radar reflection. The channel
bed contains only sparse large boulders (> 1 m) that would cause a
strong double-bounce effect. Therefore, we expect limited influence of
single strong scatterers dominating the signal at any given pixel, and
differences in backscatter amplitude instead represent the mixture of
smoother (sand) and rougher (gravel) patches. In the following, we
outline the processing of each step in the analysis, with some additional
details contained in the data repository.

5.1. Data processing

In the X-band, we used 12 TSX/TDX HH polarized stripmap scenes
(Krieger et al., 2007), with eight from descending passes and four from
ascending, all processed to 5-m ground resolution with 2 × 2
(range × azimuth) multilooking. The C-band data are from S1 VV and
VH polarized sensors in stripmap mode (Torres et al., 2012), with 15
scenes separated into five descending and 10 ascending, processed to
15-m ground resolution using 4 × 1 multilooking. Finally, we have
three L-band scenes from the ALOS2 HH and HV polarized sensor
(Kankaku et al., 2013), all from ascending passes, also processed to 15-
m ground resolution using 5 × 2 multilooking. A table with scene dates
can be found in the data repository (Table DR1).

All SAR data were received in L1 Single Look Complex (SLC) format
and processed to square gridded pixels using the Sentinel Application
Platform (SNAP) (SNAP, 2019). This included radiometric calibration,
speckle smoothing, multilooking, and terrain correction to output
backscatter rasters in γ0 format. We converted γ0 to the local incidence
angle corrected σ0 value, where σ0 = γ0 ∗ cos (θi) (Small, 2011), ex-
pressed in dB format, where dB=10∗log10(σ0). The full processing steps
are listed in the data repository (Section DR2). Two NDVI rasters were
also generated using GDAL (GDAL/OGR contributors, 2019) for the
Toro Basin using 10-m resolution Sentinel-2 (S2) scenes
(NDVI = (band8 − band4)/(band8 + band4)) from winter (20 July
2017) and summer (11 November 2017). Resulting σ0 and NDVI rasters
were clipped to the Río Toro polygon outline of the active channel and
five endmember surfaces in the study area.

5.2. Surface roughness characterization

We do not provide a detailed parameterization of roughness via
Hrms, L, and/or high-resolution 1-D elevation profile power spectra
parameters (Dierking, 1999; Shepard et al., 2001). Such efforts may be
appropriate at the plot-scale in relatively homogeneous settings where
roughness data are collected at or near the time of SAR measurement
(e.g., Weeks et al., 1996; Baghdadi et al., 2008; Aubert et al., 2011), but
our studied channel is heterogeneous and large, and our SAR scenes
span from 2011 to 2019 (Table DR1). Collecting detailed and spatially
continuous soil moisture and roughness data for site-wise para-
meterization from the exact date and time of each SAR scene is in-
feasible; although we can assume that over much of the channel the soil
moisture is extremely low as the aerially exposed bed is baked to a dry
pan in the high-intensity subtropical sunshine (Fig. 4). We are instead
interested in studying relative trends in downstream roughness and
local channel-bed patchiness within a framework of field observations
and geomorphic knowledge. From our theoretical hypotheses in Section
2 we can also determine the utility of various wavelengths and spatial
resolutions in measuring channel-bed roughness. We use endmember
surfaces to quantitatively assess the hypotheses and use this knowledge
to more qualitatively assess trends in channel bed roughness and
patchiness, which changes notably along the channel (see photos in
Fig. 3). Future work will benefit from detailed site calibration using soil
moisture and roughness along with temporally coincident multi-band
SAR data, but that is beyond the scope of this study.

5.3. Endmember surfaces

Following the generation of σ0 SAR rasters we explored the response
of the X-, C-, and L-band wavelengths over representative smooth and
rough endmember surfaces. First, we chose a collection of four homo-
geneously rough Quaternary terraces (Fig. 5A; Tofelde et al., 2017).
These terraces are flat desert pavements with little sand and the ar-
rangement of gravels and their grain-size distribution is homogeneous,
with subtle differences between the terraces related to terrace age
(Tofelde et al., 2017). Second, we selected a heterogeneously rough
man-made gravel pile, where the pile slopes act as strong scatterers via
double-bounce effects (Fig. 5B). For these extreme endmembers
(homogeneously rough terraces and heterogeneously rough gravel
pile), we took the mean and standard deviation of σ0 using every pixel
from every scene covering the endmember. The mean and propagated
standard deviation of each scene individually provided comparable
results to combining all scenes.

In a second step, we selected three small sites within the channel
area representative of the typical sand and gravel arrangements in the
Río Toro (Fig. 6). These included a large area of smooth compacted
sand, an area with mixed sand and gravel patches where pebble size
was< 0.2 m, and an area with some sand patches and many larger
pebbles and boulders. To assess the presence of some seasonal signals in
the channel that may relate to soil moisture, we extracted the back-
scatter values in these three channel endmembers for each scene in-
dividually and plotted the mean and standard deviation. These end-
members allow us to assess our initial hypothesis regarding the
response of each wavelength to various sand and gravel configurations.

5.4. Downstream trends

We extracted all σ0 pixels for each sensor and scene separately from
within the 115-km polygon outlining the active channel bed to evaluate
trends in the signal. All pixels with seasonal NDVI values> 0.15 were
masked to remove all but the sparsest vegetation. Furthermore, we
masked any pixels that had θi values< 25° or> 50°, since very high or
low angle backscatter returns may be influenced more by look geo-
metry than surface roughness (e.g., Farr, 1993; Baghdadi et al., 2008;
Aubert et al., 2011). The remaining σ0 values were plotted versus up-
stream distance.

Because of the high data density and variability, we used a 2-D
Gaussian Kernel Density Estimate (KDE) to identify the dense and
sparse zones of measurement along the channel. Considering the KDE as
a 3-D surface with the X and Y horizontal dimensions as distance up-
stream and σ0, respectively, and the Z vertical dimension as the density,
we can connect the line of maximum height (density) to extract a
trendline that is independent of bin size. Remaining spikiness in the
KDE trendline was smoothed using a Savitzky-Golay filter with a
second-order polynomial and a window size of 1 km. As a final trend-
line-smoothing step, the filtered KDE was resampled to an evenly
spaced 1-km interval using linear interpolation. In plotting of the
smoothed KDE trendlines, we separated scenes into wet (October,
November, December, January, February, and March) or dry (April,
May, June, July, August, and September) months to examine seasonal
signals that may be related to bedload transport and/or soil moisture
changes overprinting the roughness signal of interest.

5.5. Sand-gravel patchiness

The previous steps relate to theoretical endmember responses and
downstream trends in backscatter intensity. We are also interested in
another aspect of geomorphic complexity that may be explored with
these SAR data: the changes of inter-pixel variability in SAR backscatter
for different geomorphic zones along the channel. That is, the frequency
of variation in sand- or gravel-dominated pixels at a given channel lo-
cation, or the aforementioned patchiness of the channel. Low
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patchiness refers to more mixing of sand and gravel, and high patchi-
ness refers to more discrete, contiguous sand- or gravel-dominated
patches.

To analyze the patchiness of sand and gravel bedload we remain in
X-Y plan-view space to maintain the relation of each pixel to one an-
other. For this, we use the 2-D Discrete Fourier Transfrom (DFT) to
examine the frequency distribution of backscatter. This technique has
been widely applied in the geosciences, for example for measuring
landscape scaling relationships (e.g., Perron et al., 2008) and DEM ar-
tifact identification (e.g., Arrell et al., 2008; Purinton and Bookhagen,
2017). The 2-D DFT transforms a grid of evenly spaced values (σ0 in our
case) from the spatial to the frequency domain. This provides in-
formation on the amplitude and periodicity of the values. The power
spectrum, magnitude squared of the DFT (∣DFT∣2), is a measure of the
variance of σ0 with the units of amplitude squared (dB2), and can be
plotted against frequency, or wavelength (frequency−1), to evaluate
trends in the spatial signal (e.g., Booth et al., 2009).

We refer the reader to the data repository (Section DR3) for a more
detailed description, but summarize the steps here. We applied the 2-D
DFT to individual 1-km channel clips from each scene to obtain the
power spectra. We stacked all coincident 1-km channel clip power
spectra to generate large power, frequency value pairs for robust fitting.
Using each scene and 1-km channel clip independently led to large
scatter in the data collected over 9 years (Table DR1). Stacked clips
ignore inter-scene variability, but allow us to confidently assess in-
tegrated trends in sand-gravel patchiness. Initial testing demonstrated
insufficient resolution (15 m) for the S1 and ALOS2 scenes, as much of
the channel upstream of the mountain front was too narrow (Fig. 3C)
and contained too few pixels for confident DFT calculation. Therefore,
we relied only on the TSX/TDX 5-m scenes. Given the well-mixed, more
homogeneous sand and gravel patchiness above ~10 m (Fig. 4), these
data are likely at the maximum limit of spatial resolution for this
analysis in our study area.

We plotted the stacked arrays of the power against frequency in log-
log space, and fit functional models to the binned data to describe and
compare the channel clips. For the 10–18-m wavelengths, we fit a
power-law function of the form f(x) = xα, and for the 18–50-m wave-
lengths we found a better fit using a stretched-exponential function of
the form f(x) = exβ (see data repository Section DR3 for details). The
exponents (α and β) of these functions describe the distribution of long-
wavelength (low-frequency) versus short-wavelength (high-frequency)
features in a given fitting range (10–18 or 18–50 m), or the relative
development of larger versus smaller areas of similar σ0 values (i.e.,
sand- or gravel-dominated patches) in this range.

In this framework, higher negative exponent values (a steeper slope
for α or curvature for β) indicate shifting of the power-frequency dis-
tribution to longer-wavelength features compared to shorter-wave-
length features in the fitting range. In other words, there is relatively
less power at shorter wavelengths (higher frequencies), and thus more
sand-gravel patchiness developed at longer wavelengths. On the other
hand, in a channel reach where the exponent values are lower negative
(the slopes are shallower), there are more developed contiguous sand-
or gravel-dominated patches at shorter wavelengths. For example,
consider two 1-km channel clips: (1) with α= − 6 and β = − 60; and
(2) with α = − 7 and β = − 70. Channel clip (2) has higher negative
exponents (steeper functions) and thus relatively more lower frequency
(longer wavelength) sand- or gravel-dominated patches towards the 18-
m (for the α fitting range of 10–18 m) and 50-m (for the β fitting range
of 18–50 m) wavelengths. Channel clip (1), with relatively lower ne-
gative exponents (shallower functions), shows greater patchiness de-
velopment of higher-frequency (shorter-wavelength) features. Thus, we
can use this analysis to say that channel clip (1) has more small sand- or
gravel-dominated patches compared to clip (2), which shows relatively
more large sand- or gravel-dominated patches within the same fre-
quency ranges.
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6. Results

6.1. Endmember surfaces

A dataset summary in Table 1 shows that the Peake and Oliver
(1971) mean smoothness thresholds occur at 0.15, 0.29, and 1.08 cm,
and the mean roughness thresholds at 0.87, 1.65, and 6.13 cm for the X-
band TSX/TDX, C-band S1, and L-band ALOS2 scenes, respectively. As
discussed in Section 2, where the average height of roughness elements
is below the smooth threshold, we expect low σ0 as the signal is re-
flected away from the sensor, and where the surface is above the rough
threshold we expect high σ0. The range between these transitional va-
lues indicates the range of expected responses, particularly on mixed
smooth- and rough-surfaces.

The extreme endmember clips from the Toro Basin and the resulting
average and standard deviation σ0 co-polarized values are shown in
Fig. 5. As expected from wavelength considerations, the ALOS2 data
always have a lower mean backscatter signal, since the surfaces appear
more smooth. It follows that the TSX/TDX data have the highest mean
values. Through a combination of gravel and boulder elements and
double-bounce effects on the slopes of the pile, the gravel pile has the
greatest mean σ0 for each sensor, with a range of difference in mean
values to the terraces of 0.4–2.4, 1.5–3.8, and 2.4–5.2 dB for X-, C-, and
L-band, respectively, which indicates the greater sensitivity range of
ALOS2 L-band. Importantly, we note the tighter σ0 (lower standard
deviation) over homogeneously rough surfaces, like the terraces
(maximum 2.1 dB for ALOS2 on the youngest terrace T2, but typically
1–2 dB), versus for more heterogeneously rough surfaces, like the
gravel pile (maximum 3.1 dB for TSX/TDX, and all> 2 dB).

Moving from the extreme examples to the more typical sand- and
gravel-mixed Río Toro channel bed, example clip results are presented
in Fig. 6. Locations of these three sites are indicated in the caption with

reference to Fig. 3. These plots are now separated by date, and the
results from Fig. 5 are also displayed for reference.

Regarding a seasonal or time-series signal (possibly related to soil
moisture or bedload transport, since all three sites have little to no
vegetation), the standard deviation envelopes instead show the high
variability in SAR backscatter measurements. The envelopes maintain a
fairly consistent range of 2–4 dB, but they show significant scene-to-
scene shifts, even in the far upstream smooth sand site, where little to
no change is expected in the time frame of scene collection. This in-
dicates that sensor-related noise in measurement is an important caveat
to measuring roughness variation between scenes (especially regarding
small seasonal changes at a location).

Despite this caveat, clear differences in σ0 are apparent based on the
clast arrangement and radar wavelength. In all three bands there is a
large separation between the smooth sandy surface in the far upstream
Río Toro and the more pebbly and bouldery clips, with the standard
deviation envelopes showing no overlap and a similar mean difference
of 4.8–5.1 dB to the pebbly surface. Another key result from this ana-
lysis can be seen in the ALOS2 L-band sensitivity to the pebbly versus
bouldery surfaces, with a mean separation of 2.2 dB and only slight
envelope overlap (Fig. 6A). This is expected given the high L-band
threshold for saturation of 6.13 cm. On the other hand, both the TSX/
TDX X-band and S1 C-band show only a 0.7 dB separation with high
overlap in the envelope. Thus, the X- and C-band wavelengths become
saturated with the inclusion of even smaller pebble elements, and dif-
ferences in backscatter for these sensors will primarily reflect sand-
patch contribution.

6.2. Downstream trends

With a detailed understanding of expected σ0 response over end-
members, we now examine the continuous signal along the entire

Legend
(A) 8 and (B) 11 scenes from TSX/TDX
(A) and (B) 15 scenes from S1
(A) and (B) 5 scenes from ALOS2
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Fig. 5. Differences in X-, C-, and L-band σ0
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extreme endmembers (locations are indicated
in Fig. 2A). (A) shows the Quaternary terraces
with dates from Tofelde et al. (2017) and (B)
shows a large man-made gravel pile asso-
ciated with in-channel gravel extraction. The
locations of inset field photos are given by the
camera icon. The color scheme given in the
legend is pink for TSX/TDX, blue for S1, and
orange for ALOS2. Not all 12 TSX/TDX (Table
DR1) scenes had coverage of each location, as
indicated by the number of scenes in the le-
gend. The river (black outline) always flows
approximately north to south. Inset pictures
taken from each area during fieldwork.
Basemap imagery is the S2 scene used in
Fig. 1. We note that the terrace polygons are
not identical to Tofelde et al. (2017). We used
custom clips that were roughly the same size
(n is the total number of pixels for each sensor
from all scenes in each polygon) and only
from flat terrace-top surfaces away from fre-
quent gullies, small valleys, and side-slopes,
which may be unduly influenced by look-
geometry of the satellite sensor. (For inter-
pretation of the references to color in this
figure legend, the reader is referred to the
web version of this article.)
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channel reach. Fig. 7contains an example analysis from one S1 scene as
discussed in the Methods. (Fig. DR1 in the data repository contains
examples using TSX/TDX and ALOS2 scenes.) There is an increase in
NDVI values within the channel downstream of the mountain front at
(1) and in some low-slope reaches upstream of the knickzone at (4),
with the mean 1-km-binned NDVI (Fig. 3B) sometimes exceeding the
0.15 threshold for masking. However, many pixels remain as indicated
by the counts in Fig. 7C. Fig. 7A shows the spikiness of the overall trend
when using a 500-m binning approach. This high-frequency component
is removed and we are able to extract a smooth trendline from the
profile using the KDE in Fig. 7B. The sparse measurements between (4)
and (5) are indicated by the counts per 500-m bin in Fig. 7C. Here, in
the region of the Quaternary terraces, channel slopes are low and the
river narrows (Fig. 3C) and meanders at times in a wide floodplain.

KDE trendline extraction was repeated for every sensor and date.
This was done for the co- and cross-polarized bands (for S1 and ALOS2),
and, as expected from the theoretical consideration in Section 2, the
cross-polarized results were similar only lower in magnitude, and we
thus only present the co-polarized results here. The trendline for each
date was then plotted, and colored by wet or dry season to further check
for seasonality (i.e., moisture).

Initial results for TSX/TDX indicated many extreme outliers in the
trendlines, so these results are shown in the data repository Fig. DR2.
This is likely due to the higher spatial resolution (5 m), greater diffuse
reflections at the shorter wavelength for this sensor, and possible strong
interactions (more diffuse reflection) with turbid water surfaces (see P2
in Fig. 3). Also, sensor noise and processing artifacts (e.g., from our use
of the 30-m SRTM DEM for terrain correction in SNAP, rather than a
higher resolution DEM to match the TSX/TDX data), may have in-
troduced additional errors. Therefore, we eliminated these sections of
the scenes from analysis, with the final area considered from each TSX/
TDX scene displayed in the cleaned trendlines of Fig. DR3. From these
trendlines, we do note some similar basin-scale downstream trends
between the TSX/TDX scenes and the S1 data presented in Fig. 8.

For the S1 trendlines in Fig. 8A, we note that there is no clear
seasonal difference between the wet- and dry-season scenes, which
lends evidence to the dominance of roughness differences over moisture
differences in SAR backscatter response for aerially exposed sand- and
gravel-bed channels. Furthermore, there is no difference when separ-
ating the scenes into ascending or descending passes, and we can thus
neglect look direction as a factor in amplitude differences. As expected
from the scene-to-scene variability in Fig. 6, the spread in trendlines
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cover ~1–3 dB at a given upstream distance. This is partially caused by
sensor noise-related variability, but we do note that the largest spreads
occur downstream of the mountain front at (1), indicating possible
variable water-surface interactions with different discharges at each
date (at times covering a large portion of the channel bed).

Given this spread, we are hesitant to present an integrated, or
average, trendline. Instead, we take note of the similar tendency
(shape) of each trendline (increasing or decreasing) and use this to
extract the average and standard deviation of σ0 trendline slopes in 10-

km bins in Fig. 8B. We experimented with 1-, 2-, 5-, and 10-km binning
distances, and found the 10-km bins to most clearly demonstrate the
basin-scale trends of interest from S1. Extending this analysis to the L-
band ALOS2 data in Fig. 9 shows more detailed results. Again, we see
little seasonal signal in the L-band, with the backscatter spread at one
location instead caused by ALOS2 sensor-related noise and possible soil-
moisture or water-surface interactions downstream of the mountain
front. However, such interactions should cause differences in the shape
of the backscatter trendlines for S1 and ALOS2, caused by variable
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moisture or water-surface area at a given upstream distance, rather
than a scalar shift in values at one location as observed in the C- and L-
band trendlines. Thus, we attribute this variability primarily to sensor
noise.

The L-band data contain clear increasing and decreasing trends in
local channel segments when using a finer 1-km slope binning (Fig. 9B),
and a similar basin-scale trend to the S1 data using the same 10-km bin
length (Fig. 9C). Interpretation of these trends, their differences be-
tween sensor, and their geomorphic implications are provided in
greater detail in the Discussion section.

6.3. Sand-gravel patchiness

The high variability demonstrated with the spiky median line and
1st–99th percentile envelope in Fig. 7A indicates local geomorphic
complexity of the channel bedload beyond the downstream trends.
Certain localized spikes can be connected to notable features in the
field; for instance, the large positive excursions between 25- and 40-km
upstream in Fig. 7B relate to the man-made gravel piles in this reach
noted in Purinton and Bookhagen (2018) and shown in Fig. 5B. Some
local complexity is also captured in the fine-scale trendline slope ana-
lysis for L-band SAR (Fig. 9B), but we can go beyond this using the
frequency analysis and higher resolution TSX/TDX data to examine the
sand-gravel patchiness. Importantly, since the TSX/TDX X-band data
has a low roughness threshold of 0.87 cm (Table 1), the frequency
analysis is most sensitive to pixels (5 × 5=25-m2 pixel area) that
contain predominantly smooth sand.

Fig. 10 contains an example of our 2-D DFT frequency analysis for
the TSX/TDX data. The data repository Fig. DR4 shows examples of the
preprocessing of these 1-km clips to rectangular, void-free grids for DFT

analysis. Only the channel sections of each scene displayed in the noise-
cleaned trendlines of data repository Fig. DR3 were used for this ana-
lysis. Combined with stacking, the high spatial resolution of the TSX/
TDX data allowed fitting of power-law and exponential functions to 56
and 51 stacked 1-km clips, respectively, out of a possible 116 clips (1-
km each along the ~116-km channel length) with TSX/TDX coverage.
The remaining clips were either too narrow (<8 pixels, or 40 m),
contained too many void-spaces (> 40%), or produced poor power-law
or exponential fits (see data repository Section DR3 for details of DFT
analysis).

Although only a small range of frequency bins were fit by the short-
wavelength power-law with fixed xmin at 18 m (see data repository Fig.
DR5), this range (10–18 m) accounted for ~74% of the unbinned
10–50-m power spectrum values. The exponential fits with variable
xmin between 30 and 50 m, and fixed xmax at 18 m, covered ~24% of
remaining values. Thus, the combined two-function model was able to
fit ~98% of the raw data.

From the stacked 1-km TSX/TDX channel clips, the two exponents
(α and β) are plotted against channel distance in Fig. 11. Sand-gravel
patchiness developed predominantly at lower or higher frequencies is
related mostly to contiguous sand patches in each 25-m2 pixel and the
arrangement, or clustering, of those pixels with similar σ0 values in
space. A higher negative exponent (steeper slopes, relatively less power
at shorter wavelengths) corresponds to more sand patches developed at
longer wavelengths. Conversely, a lower negative exponent (shallower
slopes, relatively more power at shorter wavelengths) corresponds to
more sand patches developed as shorter wavelengths. We interpret
these downstream to upstream results in the proceeding discussion.
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Fig. 9. Smoothed KDE σhh0 trendlines for ALOS2 L-
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boxes) in the L-band results, and (C) shows the slope
in 10-km bins, which is similar to the C-band trends
shown in Fig. 8B. (For interpretation of the refer-
ences to color in this figure legend, the reader is
referred to the web version of this article.)
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7. Discussion

Our results demonstrate a novel use of SAR backscatter amplitude
measurements in a dynamic, high-mountain fluvial environment. The
use of multiple wavelengths and resolutions show important differences
and limitations of the sensors for channel-bedload measurement ap-
plications. In this discussion, we describe these differences in relation to
other studies of surface roughness using SAR, highlight geomorphic
interpretation of our data, and indicate the potential uses of the method
in braided alluvial rivers. We also discuss limitations of the sensors and
method and possible avenues for further research.

7.1. Range in backscatter for endmembers

The channel endmembers in Fig. 6 show a range in mean X-, C-, and
L-band σ0 of 5.5, 5.8, and 7.2 dB, respectively, going from smooth sand
surfaces to mixed sand, pebbles, and boulder surfaces. Baghdadi et al.
(2008) found a similar range of X-, C-, and L-band of 4–5.5, 4, and 8 dB,
respectively, on plowed agricultural fields with soil Hrms values of
~0.5–3.5 cm. These relationships between Hrms and σ0 are non linear
and typically reach a rapid plateau at Hrms values of ~1, ~1.5, and

~2 cm for X-, C-, and L-band, respectively, beyond which the soil
surface is radar saturated and increases in roughness have little effect
on σ0 (Baghdadi et al., 2008, 2018). The exact range of σ0 and the
plateau (saturation) values have varied slightly in different agricultural
studies (e.g., Aubert et al., 2011; Gorrab et al., 2015; Bousbih et al.,
2017), but are in general agreement.

Radar roughness studies from plowed agricultural soils with mixed
sand, silt, and clay content are less applicable to our fluvial setting with
mixed compacted sand and gravels, where little quantitative research
on backscatter response has been done. To our knowledge, the only
study of SAR bed-roughness in a hydrological sense is from Sadeh et al.
(2018). Here, Manning's n (the hydrological roughness of a surface) was
shown to correlate well with X-band backscatter. They found a ~4-dB
range over rock types from desert pavement to stony limestone and a
~1.5-dB range over Hrms heights from 0.7–1.7 cm.

Much non-agricultural research has focused on morphological dif-
ferences of dry desert alluvial fans, which show backscatter differences
as a smooth desert pavement forms over millenial time-scales (e.g., Farr
and Chadwick, 1996; Kierein-Young, 1997; Hetz et al., 2016). Such
differences in σ0 from the different Quaternary terraces in Fig. 5A may
be related to terrace age (Tofelde et al., 2017) and morphological
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differences, whereby weathering processes reduce clast size, thus
smoothing the surface over time (Hetz et al., 2016). The tighter spread
(lower standard deviation) on these terraces demonstrates the effect of
a spatially homogeneous roughness, with similar rock sizes and rock
spacing over a large area (see inset photo in Fig. 5A).

Deroin et al. (1997) measured properties of loose rocks in desert test
plots and found log scaling over a ~16-dB range in C-band σ0, going
from silt- to rock-dominated surfaces with a maximum rock-height
range of ~0.5–15 cm (with a plateau in σ0 beginning at ~4 cm). As
discussed in Section 5.2, we do not have the detailed site calibration
data to provide metrics like rock-height range, however, when con-
sidering the full range in S1 C-band σ0 from the approximate minimum
of the standard deviation envelope of the sandy area (−21 dB) to the
maximum standard deviation spread of the gravel pile (−7.5 dB) (see
Fig. 6B), we find a similar range of 13.5 dB.

Such results indicate the ability of distributed roughness elements
(i.e., gravels on top of a sandy surface) to modulate backscatter in-
tensity beyond expected saturation plateaus, as each 5 × 5-m (25-m2)
or 15 × 15-m (225-m2) pixel SAR measurement may contain a mixture
of both smooth and rough patches. The greater difference of L-band to
the pebbly and bouldery surfaces in Fig. 6A, also shows how longer
wavelength SAR has a higher saturation plateau and may be more
useful for assessing differences in downstream grain size, whereas C-
band, and especially X-band, is less sensitive to changes beyond sand-
gravel transitions.

7.2. Backscatter trends and geomorphic implications

Our assessment of expected (from previous work) and observed
(from endmembers) backscatter response allows us to interpret down-
stream trends along the Río Toro. Although we lack extensive calibra-
tion data for a quantitative discussion, detailed knowledge of the study
area gained through fieldwork and extensive channel-bed cross-section
photo surveys (Purinton and Bookhagen, 2019a) allows us to make
consistent, qualitative statements about observed trends.

S1 C-band and ALOS2 L-band 10-km binned trendline slope results
in Figs. 8B and 9C, respectively, show a common feature of negative
trends upstream of the channel fork at (5) switching to positive trends
downstream. Upstream of this fork, large quantities of sand are sourced
from the loose slopes of the large Quaternary terraces (Fig. 5A),

whereas downstream of the fork there are increases in gravels. Thus,
both datasets capture the approximate sand-gravel transition in the Río
Toro.

For S1 C-band (Fig. 8), increasing σ0 (positive slopes) continues
from the upstream fork at (5) all the way to the tributary confluence at
(2). Based on endmember considerations for S1 data, we interpret these
trends to be related to the reduction of contiguous sand patches via
mixing of gravel elements. The C-band σ0 is saturated at 1.65 cm
(Table 1), so there may be some response to modulation of grain size
downstream, but decreased sand is most important. The confluence
with the large tributary at (2) presents another change point for the S1
C-band as large amounts of sand are again introduced by weathered
Cretaceous siltstones and sandstones sourced from this tributary basin
that quickly degrade to sand. Downstream of (2) the trends become
more constant with the 10-km binned slope near zero. Remaining
trendline variability downstream of (2) is difficult to interpret given the
inherent noise in these individual SAR scenes. Slight modification may
be caused by additional small tributary links delivering sand and/or
gravels to the main channel, anthropogenic tampering via gravel
mining (Purinton and Bookhagen, 2018), bed armoring (see P1 in
Fig. 3), and river-water surface interactions (see P2 in Fig. 3), but this is
difficult to say without detailed calibration data (discharge, soil
moisture, grain-size metrics) for each scene.

Regarding ALOS2 L-band, the 10-km binned trendline slope
(Fig. 9C) is similar to C-band, responding to changes in sand fraction.
There is a decreasing trend in the sandy reach upstream of (5),
switching to an overall increasing trend downstream into the gorge via
reduction in sand. A key difference to the C-band trend is apparent at
~65-km upstream in the gorge, where the L-band increasing trend in
the 10-km binned slope switches back to decreasing. This is likely re-
lated to the fining of gravels to below the higher 6.13-cm L-band
roughness threshold (Table 1). The greater grain-size variability cap-
tured by the longer wavelength L-band SAR becomes apparent in the 1-
km binned results (Fig. 9B). This variability is linked to a combination
of sand-fraction and gravel-size changes, corresponding to tectono-
geomorphic transitions and tributary inputs, as indicated with some
text boxes and arrows in Fig. 9B.

To summarize the observed L-band 1-km binned trends based on
field knowledge: Downstream of the fork at (5) but upstream of the
Gólgota Fault at (4) there are frequent, small changes in grain size
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Fig. 11. Downstream trends in (A) α and (B) β of the
power-law and stretched-exponential fits, respec-
tively, for the stacked 1-km channel clips from the 5-
m TSX/TDX scenes. To provide spatial context, each
plot includes the channel elevation profile (gray
line) on the right axis (see Fig. 3A), where the tec-
tono-geomorphic transitions (1–5) correspond to
Fig. 2B. Each stacked clip is shown with gray sym-
bols and 1-standard deviation error bars. To high-
light the overall trends, these exponents are ag-
gregated in 10-km bins at the median value with
per-bin Interquartile Range (IQR) error bars. More
negative values correspond to relatively more sand-
dominated patches developed towards longer wa-
velengths (lower frequencies), whereas lower nega-
tive values correspond to relatively more sand-
dominated patches developed towards shorter wa-
velengths (higher frequencies), in the 10–18-m or
18–50-m wavelength range for α and β, respectively.
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where fans from terraces, paleolakes, and paleolandslide deposits meet
the channel bed. Just upstream of the fault at (4) are a number of coarse
paleolandslide deposits, likely associated with Quaternary activity of
the Gólgota Fault (Marrett et al., 1994), which lead to spikes in back-
scatter intensity. The double-spiked feature at ~70–75-km upstream is
caused by this coarse material delivered from the steep hanging-wall
bedrock walls directly to the channel bed. A dip between the two spikes
in Fig. 9A causes a flip from increasing to decreasing and back to in-
creasing backscatter in Fig. 9B. This dip may be partially related to
slightly finer gravels and increased sand in this ~1–2-km channel reach,
however, we note that this is a locally narrow channel section with few
15-m pixels available for interpretation (see the data repository Fig.
DR1 for the 500-m binned pixel count). Just downstream of the double
spike at ~70-km the Río Toro crosses a junction with a small, steep
catchment bisected by the Gólgota Fault. Abundant, highly erodible
Miocene sandstones and siltstones exposed in this sub-catchment de-
liver a large amount of sand to the Río Toro, leading to a rapid decrease
in backscatter intensity. (This response to tributary sand delivery is
repeated again at (2) with a rapid decrease in backscatter.) The zone of
finer grain size and low backscatter intensity around 70-km upstream is
quickly interrupted by the confluence with a coarse debris-flow domi-
nated fan at (3), which again increases the grain size and backscatter
intensity. Further fluctuations downstream of (3) in the steep bedrock
gorge are related to frequent small landslides delivering a wide grain-
size distribution to the channel.

As noted in the Methods, the assessment of sand-gravel patchiness
via power-law and exponential model fitting to backscatter power
spectra was only possible using our 5-m TSX/TDX data. These X-band
data primarily reflect the contribution of smooth sand patches, as even
small gravels will rapidly saturate the signal (roughness threshold of
0.87 cm, see Table 1). The high variability from the stacked 1-km
channel clip exponents, shown in Fig. 11 by the gray symbols, is ex-
pected given the dynamic channel. Sand and gravel patches shift often
between seasons and over years, and the X-band 5-m data are sensitive
to even small changes. Integrating TSX/TDX scenes collected over
5 years (including both real changes in grain size and inherent noise in
the individual scenes) in the stacked 1-km clips further contributes to
the large range of α and β in Fig. 11.

Despite the large spread in the exponent values and sometimes
sparse data availability (e.g., narrow sections of the channel from 75 to
95-km upstream), we can make some tentative interpretations of the
frequency results as they relate to geomorphic understanding. For the
shorter-wavelength (10–18 m) power-law fits (Fig. 11A), α increases
from upstream of the fault at (4) into the steeper bedrock gorge. This
implies a decrease in lower-frequency contiguous sand patches and a
relative increase in more high-frequency sand patches. Thus, in the
steeper, more geomorphically active gorge, there are less large con-
tiguous sand patches with more frequent changes in the grain-size
distribution over shorter distances, matching expectations from field
observations. Upstream of the gorge there are more large contiguous
sand-dominated patches given the lower channel slope, delivery of
terrace-derived sand, and arid conditions leading to stability of sand
patches over longer time periods compared to the gorge. Downstream
of the tributary confluence at (2) there is a shift to higher negative α
values, because there is the influx of sand from the weathered sand-
stones and siltstones, and the channel also widens significantly in this
reach (Fig. 3C) creating accommodation space for stable, large sand
patches. Downstream of the mountain front at (1), α clusters tightly in
the 30–40-km reach, where anthropogenic modification (gravel mining;
Purinton and Bookhagen, 2018) and high bedload transport creates
more constant patchiness at the 10–18-m wavelength scale. Sand
patchiness scatters downstream of 30 km, where there is a diverse mix
of sand and gravel arrangements in the low-slope, wide-channel fore-
land (Fig. 3C), where frequent higher flows (see P2 in Fig. 3) cause
rearrangement of patches.

For the long-wavelength (18–50 m) stretched-exponential fits

(Fig. 11B), β has a slight overall decreasing downstream trend. This
implies increasing low-frequency (towards 50-m wavelength) con-
tiguous sand patches as we travel downstream, but there is significant
scatter in the data. This scatter is expected from field knowledge and
the photos in Fig. 4, which show diverse, mixed grain-size arrange-
ments at larger scales, and fewer elongated gravel- or sand-dominated
bars. The slightly pronounced trend towards relatively more large sand
patches in the 20–30-km and 10–20-km bins may indicate that in this
longer-wavelength (18–50-m) range, the presence of large contiguous
sand patches increases in the foreland, but this is difficult to determine
without detailed site parameterization data in the form of roughness
profiles.

7.3. Caveats and application of the method

Throughout our analysis, we have mentioned the river-water sur-
face in the channel, which may modulate the roughness signal (e.g.,
Hwang and Fois, 2015; Uddin et al., 2019). Upstream of the mountain
front the width of the active channel is limited to<~10 m (Fig. 4), so
there is limited effect of the water surface in the typically> 100-m
wide channel bed. Downstream of the mountain front, the active
channel width can locally exceed ~50 m (P2 in Fig. 3). However, in this
downstream region the channel bed is typically> 200-m wide, in
places exceeding 800 m (Fig. 3C). Thus, these water pixels should have
a limited overall effect on the integrated signal of many pixels over
months to years of scene collection. Using scenes from many dates
(including during the lower discharge dry season), insures that most of
the channel bed is exposed to direct SAR measurement of sand and
gravels. Nevertheless, researchers interested in applying this method
should be aware of the complicating effect of water surfaces in channels
that maintain higher flow conditions, submerging the bedload of in-
terest.

In highly active alluvial channels in steep, high-mountain environ-
ments with mixed sand and gravel grain-size distributions, the varia-
bility in sand- or gravel-dominated patches often occurs over short
(< 50 m) distances. Thus, our TSX/TDX data are likely near the limit of
sand-gravel patchiness measurements, with lower-resolution data (e.g.,
15 m) integrating signals over scales at which the channel-bed material
is more homogeneous and well-mixed. Higher-resolution TSX/TDX data
are possible from the spotlight sensing mode (e.g., Aubert et al., 2011)
or with lower multilooking, however, there is a trade off between the
signal-to-noise ratio as resolution or multilooking is decreased.
Channel-bed patchiness via the power spectrum approach is likely
limited to only high-resolution SAR sensors, but it is nevertheless a
novel use of DFT analysis for SAR amplitude data, extendable to other
surfaces of interest (e.g., agricultural fields).

Mapping full grain-size distributions is challenging from SAR data
alone. Longer-wavelength P-band (λ=68 cm) measurements have
shown even greater ranges in roughness sensitivity with some potential
for mapping grain-size distributions using combinations of L-, and P-
band (e.g., Campbell and Shepard, 1996; Campbell, 2001), but these
sensors are rare. L-band data alone are shown here to be sensitive to
some changes in grain-size, but further work involving detailed site
parameterization along with temporally coincident SAR measurements
are necessary to move this analysis into a more quantitative framework.

Thus, for the time being, SAR amplitude measurements over alluvial
sand- and gravel-bed rivers in high-mountain environments are limited
to measuring the gravel-sand transition zones with some accuracy (i.e.,
changes in backscatter trend from positive to negative slopes as sand
increases), and to determine relative changes in grain-size using longer
wavelength SAR. The gravel-sand transition is of great interest in un-
derstanding mechanisms of downstream fining via processes of abra-
sion or selective transport (Lamb and Venditti, 2016; Dingle et al.,
2017), and the proposed methods could be applied at large scales using
river outlines extracted by manual digitization on freely available
imagery (Fisher et al., 2013).
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8. Conclusions

SAR amplitude is a useful, weather independent, remote-sensing
tool for measuring surface roughness from space. Previous research has
focused primarily on applications to water surfaces, agricultural fields,
or dry desert alluvial fans. Here, we have presented a novel use of SAR
amplitude data applied to high-mountain alluvial channel bedload
measurements. Through presentation of theory and hypothetical
backscatter responses, testing on endmember surfaces, and careful
trendline consideration, we demonstrated the limits of various radar
wavelengths for this analysis. The described method is not able to map
full grain-size distributions, but the transition between radar-smooth
sand surfaces and radar-rough gravels can be assessed, and trends in
these bedload arrangements are visible. Longer wavelength SAR (e.g.,
L-band) shows a larger range of measurement, and higher spatial re-
solution SAR (e.g., TerraSAR-X/TanDEM-X) can be used for detailed
geomorphic characterization. Mapping the sand-gravel transitions in
alluvial rivers can be done using even shorter wavelength and coarse
spatial-resolution SAR sensors (such as from freely available Sentinel-1
C-band imagery). The methods presented here increase the breadth of
environmental measurements possible from spaceborne radar. The
spatial scales of these observations can be greatly increased to entire
orogenic belts, and time series, such as those regularly generated from
Sentinel-1, can potentially be used to look at temporal dynamics of sand
and gravel bedload.
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