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Snowfall comprises a significant percentage of the annualwater budget inHighMountain Asia (HMA), but snow-
water equivalent (SWE) is poorly constrained due to lack of in-situ measurements and complex terrain that
limits the efficacy ofmodeling and observations. Over thepast fewdecades, SWEhas been estimatedwith passive
microwave (PM) sensors with generally good results in wide, flat, terrain, and lower reliability in densely forest-
ed, complex, or high-elevation areas.
In this study, we use raw swath data from five satellite sensors — the Special Sensor Microwave/Imager (SSMI)
and Special Sensor Microwave Imager/Sounder (SSMIS) (1987–2015, F08, F11, F13, F17), Advanced Microwave
Scanning Radiometer — Earth Observing System (AMSR-E, 2002–2011), AMSR2 (2012–2015), and the Global
Precipitation Measurement (GPM, 2014–2015) — in order to understand the spatial and temporal structure of
native sensor, topographic, and land cover biases in SWE estimates in HMA.We develop a thorough understand-
ing of the uncertainties in our SWE estimates by examining the impacts of topographic parameters (aspect, relief,
hillslope angle, and elevation), land cover, native sensor biases, and climate parameters (precipitation, tempera-
ture, and wind speed). HMA, with its high seasonality, large topographic gradients and low relief at high
elevations provides an excellent context to examine a wide range of climatic, land-cover, and topographic
settings to better constrain SWE uncertainties and potential sensor bias.
Using a multi-parameter regression, we compare long-term SWE variability to forest fraction, maximal multi-
year snow depth, topographic parameters, and long-term average wind speed across both individual sensor
time series and amergedmulti-sensor dataset. In regions where forest cover is extensive, it is the strongest con-
trol on SWE variability. In those regions where forest density is low (b5%), maximal snow depth dominates the
uncertainty signal. In our regression across HMA, we find that forest fraction is the strongest control on SWE
variability (75.8%), followed by maximal multi-year snow depth (7.82%), 90th percentile 10-m wind speed of a
10-year December-January-February (DJF) time series (5.64%), 25th percentile DJF 10-m wind speed (5.44%),
and hillslope angle (5.24%). Elevation, relief, and terrain aspect show very low influence on SWE variability
(b1%). We find that the GPM sensor provides the most robust regression results, and can be reliably used to
estimate SWE in our study region.
While forest cover and elevation have been integrated into many SWE algorithms, wind speed and long-term
maximal snow depth have not. Our results show that wind redistribution of snow can have impacts on SWE,
especially over large, flat, areas. Using our regression results, we have developed an understanding of sensor-
specific SWE uncertainties and their spatial patterns. The uncertainty maps developed in this study provide a
first-order approximation of SWE-estimate reliability for much of HMA, and imply that high-fidelity SWE esti-
mates can be produced for many high-elevation areas.
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1. Introduction

Tracking the accumulation andmelt of snow is essential for weather
forecasting, climate modeling, and water management applications.
Estimates of snow depth (SD) and snow-water equivalent (SWE) pro-
vide additional information on the volume of water stored and released

from snowpack, which is critical for managing flood risk, irrigation
systems, and hydropower (Armstrong & Brodzik, 2002), (Tedesco &
Narvekar, 2010). Several methods have been used to estimate SD
and SWE over large areas, such as modeling based on snow covered
area (SCA) and a conversion factor (Bookhagen & Burbank, 2010),
(Immerzeel, Droogers, De Jong, & Bierkens, 2009), estimating melt vol-
ume by backward calculation of snow clearance dates (Molotch &
Margulis, 2008; Guan et al., 2013), direct measurements of SWE with
in-situ climate stations, and SWE estimation with passive microwave
(PM) data (Chang, Foster, Hall, Rango, & Hartline, 1982; Chang, Foster,
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& Hall, 1987; Clifford, 2010; Daly et al., 2012; Pulliainen, 2006; Takala,
Pulliainen, Metsämäki, & Koskinen, 2009; Takala et al., 2011; Tedesco,
Derksen, Deems, & Foster, 2015). SWE estimation with PM data is the
onlymethodwhich can estimate SWE over large areas, across all terrain
types, and provide high-temporal resolution SWE estimates based on
empirical relationships. High temporal-resolution data is imperative
for accurately guaging snowmelt and downstream runoff (Anderton,
White, & Alvera, 2002; Dozier, Painter, Rittger, & Frew, 2008; Painter
et al., 2009).

Beginning in 1978with the ScanningMultichannelMicrowave Radi-
ometer (SMMR) system, PM data has been used to measure snow pa-
rameters (Knowles, Njoku, Armstrong, & Brodzik, 2002; Chang et al.,
1982). PM data has several significant advantages over optical remote
sensing data for the collection of snow data, including cloud penetra-
tion, night-time data collection, and high sensitivity to water content
in snowpack. For many snow-covered regions, winter storms can dras-
tically limit optical data collection due to cloud cover. The Special Sensor
Microwave/Imager (SSMI) (Wentz, 2013), Special Sensor Microwave
Imager/Sounder (SSMIS) (Sun & Weng, 2008), Advanced Microwave
Scanning Radiometer — Earth Observing System (AMSR-E) (Ashcroft
& Wentz, 2013), AMSR2 (Imaoka et al., 2010), and Global Precipitation
Measurement (GPM) (GPM Science Team, 2014) sensors each collect
data at several microwave spectra, and can be used for the evaluation
of snowpack at daily or greater resolution.

Several algorithms have been developed to estimate SD and SWE
from PM data (e.g., (Chang et al., 1987; Kelly, Chang, Tsang, & Foster,
2003; Pulliainen, 2006; Kelly, 2009; Tedesco & Narvekar, 2010; Takala
et al., 2011). The majority of these algorithms exploit the difference be-
tween the brightness temperatures (Tb) at the ~18 and ~36 GHz chan-
nels. However, more recent algorithms, such as those proposed by
(Kelly, 2009), also exploit the ~10, ~23, and ~89 GHz channels available
on AMSR-E/2 and GPM, which can better resolve shallow snow condi-
tions and are less sensitive to saturation of the PM signal at the
~18 GHz band (Derksen, 2008). Improvements on SWE estimation
have also been made by tuning the original equations proposed by
(Chang et al., 1987) to specific regional conditions (Mizukami &
Perica, 2012), correcting for elevation (Savoie, Armstrong, Brodzik, &
Wang, 2009), and by introducing a forest cover correction (Foster
et al., 2005). While these methods have improved upon SWE estima-
tion, they remain unreliable in complex topography (Tedesco et al.,
2015).

Topographic relief can have strong impacts on sensed Tb values
(Mätzler & Standley, 2000;Dozier & Warren, 1982). First, the path be-
tween the ground surface and the PM sensor is determined by the
ground elevation, which can introduce a height-dependent bias
(Savoie et al., 2009). Second, complex terrain can interact constructive-
ly, where the sensed Tb values are not only the PM radiation emitted by
a flat surface, but the combination of interacting microwave signals
from hillslopes which face each other. Third, topography can shadow
parts of the satellite field of view, which preferentially samples those
hillslopes which face the satellite. Last, land surface slope changes the
relative look angle of the satellite, which can preferentially enhance or
degrade the microwave signal from different areas of the same field of
view, and modify the relative signal strengths of horizontally and verti-
cally polarized Tb data (Dozier & Warren, 1982). In addition to topo-
graphic impacts, forest cover can significantly reduce the Tb difference
term used by SWE algorithms (Chang, Foster, & Hall, 1996; Foster
et al., 2005). This is due to the attenuation of microwave signals as
they pass through dense vegetation, which can reduce SWE estimates
by as much as 50% (Brown, 1996; Vander Jagt et al., 2013).

While studies have examined the reliability of SWE data from
several satellite platforms (i.e. Imaoka et al., 2010; Armstrong &
Brodzik, 2001; Armstrong & Brodzik, 2002; Brown, 1996; Chang et al.,
1996; Dai, Che, & Ding, 2015; Foster et al., 2005; Langlois et al.,
2011;Mizukami & Perica, 2012; Sun & Weng, 2008; Tedesco &
Narvekar, 2010; Wang & Tedesco, 2007; Savoie et al., 2009; Dong,

Walker, &Houser, 2005), few large-scale analyses of SWEhave been un-
dertaken in High Mountain Asia (HMA), and none have examined the
impacts of long-term maximal snow depth and wind redistribution on
SWE variability.

As HMA lacks an extensive and reliable ground-weather station net-
work, particularly at elevations above 3000 m, we do not rely on in-situ
data to compare our satellite-based SWE estimates to those of any
snow-monitoring stations. Instead, we focus on understanding the util-
ity and limitations of satellite-based PM data – especially those factors
which may reduce the reliability of SWE estimates – by examining a
multi-frequency time series of PM data across a range of topographic,
land cover, and climate settings.

2. Materials and methods

In this study we use a multi-instrument time series of SSMI, SSMIS,
AMSR-E, AMSR2, and GPM PM data from 2000–2015 in combination
with topographic, land-cover, and climatic data.

2.1. Study area

Our study area encompasses a wide range of climatic seasonality, el-
evation, topographic relief and hillslope angles. It includes not only high
relief and high complexity areas typical of many mountain ranges, but
also large areas of low relief at high elevation (i.e., the Tibetan Plateau).
Low but variable forest density across the study region, in combination
with the range of topographic characteristics, allows us to examine
a range of factors which impact SWE estimation with PM data. We ran-
domly generated 5000 pointswithin our study area, and removed those
close tomajor bodies ofwater. From this subset,we choose 2500 sample
points which cover a wide range of elevation, relief, slope, and aspect
settings (Fig. 1).

2.2. Topographic, land cover, and climate data

The 2000 Shuttle Radar TopographyMission V4.1 (SRTM) Digital El-
evationModel (DEM) (~90-m, void-filled) was leveraged to provide el-
evation, hillslope angle, aspect, and 5-km radius relief (Jarvis, Reuter,
Nelson, Guevara, et al., 2008) (Fig. 1). We then apply an averaging filter
over a 20-km radius to the hillslope, elevation, and relief surfaces to
minimize spatial-resolution differences and PM location uncertainties
when comparing between 90-m and ~25-km resolution data (Fig. 2A,
B).

High Asia Reanalysis (HAR) (2000–2014) provides 10-km resolution
land-surface temperature at 2-m heights (product t2) at both daily and
3-hourly temporal resolution over 98% of the study area for the period
2000 to 2014 (Maussion et al., 2014). For those points which fall outside
of the 10-km HAR domain, we use the 30-km product instead. We use
the hourly product to create average daily daytime and nighttime tem-
peratures, as well as bi-daily deviation values from the long-term aver-
agemonthly temperatures. In addition to theHAR temperature product,
we leverage the 10-m surface wind speed dataset (product ws10) to as-
sess the impact of high-wind areas on SWEvariability (Fig. 2C).We treat
the HAR wind product as a ‘static’ dataset in our analysis by using long-
term statistics derived from the 14-year time series of wind speed data,
such as the long-term December-January-February (DJF) median, 25th
and 90th percentile wind speeds at each pixel. By using percentiles as
proxies for long-term trends in the climate data, we canmore accurately
compare trends in wind speed with trends in SWE and SWE variability
over the whole time series instead of on a daily or hourly basis.

TRMM product 3B42 V7 (1997–2014) provides daily rainfall esti-
mates at 0.25° × 0.25° resolution (Huffman et al., 2007). This data is
used to isolate precipitation-free days and multi-day periods from the
larger time series, with a sensed precipitation threshold of 0.1 mm/h.

Fractional forest cover is derived fromMODISMOD12Q1 yearly data
(2001−2012), following the Boston University IGBP classification
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scheme (Hansen et al., 2003). Forest density is derived from MODIS
MOD44B global forest density yearly data (2000–2010, (DiMiceli et al.,
2011)). BothMOD12Q1 andMOD44B area averaged over a 20-km radi-
us (Fig. 2D).

The AMSR EASEgrid SWEproduct (L3 v2, 2002–2011) provides SWE
estimates at 0.25° × 0.25° resolution across our entire study area
(Tedesco, Kelly, Foster, & Chang, 2004). The EASEgrid product at daily
resolution is used to visually compare the SWE estimation of a large-
scale gridded products with the results of our point-level SWE analyses.
We also use the AMSR EASEgrid product to examine the distribution of
snow depth throughout our study area. In our analysis of SWE uncer-
tainty, we use the 9-year daily resolution time series of SWE measure-
ments to derive 95th percentile SWE volume estimates for each
grid cell. These estimates serve as proxies for tracking areas which see
frequent deep snow cover.

To identify time periodswhich should nominally have constant SWE
(i.e., no changes in SWE), we choose those periods where (1) the HAR
temperature does not rise above 0 °C and (2) there is no sensed precip-
itation, as measured by TRMM. These periods are termed ‘clear days’
throughout thismanuscript, and are used in Sections 3 and 4 to examine
native inter- and intra-sensor variability.

2.3. Passive microwave data

In this study we acquired ungridded, raw, swath data for SSMI and
SSMIS (F08, F11, F13, F17, 1987–2015, (Wentz, 2013; Sun & Weng,
2008)), AMSR-E (2002–2010, (Ashcroft & Wentz, 2013)), AMSR2
(2012–2015, (Imaoka et al., 2010)), and GPM (2014–2015, (GPM
Science Team, 2014)) satellites. The characteristics of each satellite are
listed in Table 1.

We examined the potential of the TRMM Microwave Imager
(TMI) instrument to measure SWE, but found the results unreliable. In

particular, the 36 V channel experienced highly variable Tb fluctuations,
making SWE estimation with the TMI sensor problematic.

2.4. Swath processing

We examine the raw, orbital PM data at each satellite's respective
native sensor resolution and do not resample the data to an equally-
spaced or consistent grid. By maintaining native resolution, we are
able to increase our data density by using multiple imperfectly-
overlapping swaths (Fig. 3). Native resolution also improves direct,
point-by-point comparisons between horizontally and vertically polar-
ized data points by avoiding any data resampling. In this study, we use
30,865,102 individual data points across five satellites and 2500 random
sample locations to examine long-term aggregate and inter-sensor dif-
ferences in PM data. We also process a subset of 14,804,414 data points
which occur on ‘clear days’, or days which do not see temperatures
above 0°C and have no sensed precipitation.

To examine the swath data at 2500 randomly chosen point locations
across the study area, we implement a search algorithm to find the clos-
est data point within each individual swath (maximum distance 0.1°,
approx. 10 km) throughout the entire measurement period of each sat-
ellite. To test the influence of the chosen search distance on Tb values at
any given point, we have examined whole time series Tb means and
standard deviations against the distance from the sampling center
point (Fig. S1 in the Supplement). Across search distances, the means
and standard deviations do not change appreciably, indicating that
while theremay be some changes in the variability signal we seewithin
a subsetted dataset, these changes are due to the reduction in data den-
sity and not due to variability in the satellite field of view over time.

In this way, we develop a time series of Tb values at each point loca-
tion at native instrument spatial resolution (Fig. 3). Using the time of
each individual capture in conjunction with the latitude and longitude

Fig. 1. Topographicmap of HighMountain Asia (HMA) based on SRTMV4.1 datawith political boundaries (black) andmajor rivers (blue). Black dots indicate randomly-generated sample
points (n = 2500) encompassing a wide range of land cover, topographic, and climate regimes. Red box indicates extent of Fig. 3. For each sample point, we have extracted a multi-in-
strument time series of PM data, landscape characteristics (forest cover, hillslope angle, elevation, aspect, relief), and climate data (rainfall, temperature, wind speed). (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)
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of the point location,we derive the position of the sun relative to the ho-
rizon. In our analysis of SWE, we only use those points where the sun is
below the horizon. While this method is more computationally expen-
sive than using only the descending orbits of each satellite, it allows us
to expand our dataset by including every data point which is captured
at night, regardless of which orbit it falls in. It also allows us to examine
intra-day differences in measured Tb through the daytime and night-
time subsets of the Tb time series.

Finally, we implement a correction to the SSMI/S data, as proposed
by (Dai et al., 2015), to normalize the SSMI/S data received from the
multiple satellites (F08, F11, F13, F17). In this way, we ensure that

each satellite dataset is as internally consistent as possible. We assume
that the inter-calibration between AMSR-E and AMSR2 is of high quali-
ty, and thus do not perform any additional inter-calibration for the
AMSR sensors.

2.5. SWE estimation

Although several SWE estimation algorithms have been proposed
(e.g., Chang et al., 1987; Kelly et al., 2003; Pulliainen, 2006; Kelly,
2009; Takala et al., 2011; Mizukami & Perica, 2012; Savoie et al., 2009;
Tong, Dery, Jackson, & Derksen, 2010), this study chooses to use only

Fig. 2. Topographic and climatic characteristics of HighMountain Asia: (A) 5-km radius relief and (B) hillslope angle (degree), derived from SRTM V4.1 and averaged over a 20-km radius
(Jarvis et al., 2008); (C) 14-year averaged December-January-February (DJF) median 10-m wind speed (m/s), derived from HAR (Maussion et al., 2014), and (D) forest density, derived
from MOD44B (2000–2010, (DiMiceli et al., 2011)). Black dots indicate random sample locations (cf. Fig. 1).

Table 1
Characteristics of PM sensors used, with native channel frequencies, spatial resolutions, processing algorithms, orbit frequencies, and satellite angular properties.

Satellite Temporal coverage Channels (GHz) Spatial resolution (km2) Processing
level/algorithm

SSMI Aug 1987–Apr 2009 (22 years) 19.35, 22, 36, 85 69 × 43, 60 × 40, 37 × 28, 16 × 14 FCDR V07
SSMI/S Jan 2008–Apr 2015 (7 years) 19.35, 22, 36, 92 69 × 43, 60 × 40, 37 × 28, 37 × 28 FCDR V07
AMSR-E May 2002–Oct 2011 (9 years) 6.93, 10.65, 18.7, 23.8, 36.5, 89 75 × 43, 51 × 29, 27 × 16, 27 × 16, 14 × 8, 6 × 4 L1B
AMSR2 Jul 2012–Sep 2015 (3 years) 6.93, 7.3, 10.65, 18.7, 23.8, 36.5, 89 62 × 35, 62 × 35, 42 × 24, 22 × 14, 19 × 11, 12 × 7, 5 × 3 L1R
GPM Feb 2014–Jul 2015 (1.5 years) 10.65, 18.7, 23.8, 36.5, 89, 166, 183.31 32.2 × 19.4, 18.3 × 11.2, 15 × 9.2, 14.4 × 8.6, 7.3 × 4.4, 7.1 × 4.4, 7.2 × 4.4 L1B

Satellite Number of orbits (descending/ascending) Average observations per month Earth incidence angle (°) Scan angle range (°)

SSMI 176,460/176,460 1411 53.1 ±51.2
SSMI/S 41,896/41,896 901 53.1 ±71.6
AMSR-E 49,083/49,079 868 55 ±61
AMSR2 16,623/16,623 874 55 ±61
GPM 3919/3919 435 52.8 ±70
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two of these to examine SD and SWE. The first method is based on the
Chang equation:

SD cm½ " ¼ 1:59 cm=K½ " $ Tb18v−Tb36vð Þ K½ " ð1Þ

This equation has seen wide use across the SSMI/S and AMSR-E
platforms. To our knowledge, the Chang equation has never been used
with GPM data to estimate SWE. However, due to the similar spectral
ranges carried onboard AMSR-E/2 and GPM, we assume that the modi-
fied Chang equation, as proposed by (Armstrong & Brodzik, 2001), will
work equally well for the GPM platform.

We also use a more complex algorithm – as initially developed
for the AMSR-E satellite (Kelly et al., 2003; Kelly, 2009; Tedesco &
Narvekar, 2010) – that includes a measure of forest cover and density.
Both forest fraction and forest density have been shown to have strong
impacts on SWE estimates, particularly in dense forests (Dewalle &
Rango, 2008; Langlois et al., 2011). This more complex algorithm also
uses the ~10GHz channel on AMSR-E/2 andGPM, and both the vertical-
ly and horizontally polarized ~18 and ~36 GHz channels

SD ¼ ff SDff
! "

þ 1( ffð ÞSDo ð2Þ

where ff is fractional forest cover, SDff is the SD of the forested fraction,
and SDo is the SD of the non-forested fraction. SDff and SDo are derived
with

SDff ¼ p1 $ Tb18V ( Tb36Vð Þ= 1( fd $ 0:6ð Þ ð3Þ

SDo ¼ p1 $ Tb10V ( Tb36Vð Þ þ p2 $ Tb10V ( Tb18Vð Þ ð4Þ

where fd is forest density and p1 and p2 are 1/log10(Tb36V-Tb36H)
and 1/log10(Tb18V -Tb18H), respectively. While neither the MOD12Q1
nor MOD44B products cover our entire time period, we forward- and
back-estimate ff and fd by linear interpolation. This has a minimal
impact on intra-sensor SWE estimation, and, as forest densities are gen-
erally low across the study region, does not significantly impact our re-
sults. While attenuation of the microwave signal in forests is a large
problem in many parts of the world (e.g., Northern Canada, (Foster
et al., 2005)), our study region is very sparsely forested (Fig. 2D).

While both algorithms (Eqs. (1) and (2)–(4)) produce reasonable
SWE estimates, previous work has shown that differences in the SSMI
and AMSR-E retrieval algorithms can result in strong bias, and in partic-
ular an elevation-dependent bias (Daly et al., 2012). We present results
for several single-sensor SWE time series, across multiple sensor

platforms. As can be seen in Fig. 4, the temporal patterns of SWE are
very similar across both algorithms, even if the absolute values of SWE
are different. These similarities are emphasized by the black lines
in Fig. 4, which are smoothed by a 21-point Savitzky-Golay filter for dis-
play purposes (Savitzky & Golay, 1964). To simplify our discussion of
intra-sensor and inter-sensor SWE variabilities and the impacts of dif-
ferent topographic factors,we choose to use the original Chang equation
(Eq. (1)) for SWE estimation, along with a constant average snow den-
sity of 0.24 g/cm 3 conversion factor to transform SD into SWE (Takala
et al., 2011).

2.6. Understanding uncertainties in PM data

To examine possible sources of uncertainty and variance in our SWE
estimates, we have divided both the SWE and raw Tb data by time of
day, position along the satellite scanline, and by several topographic
parameters.

2.6.1. Time of day
Previous studies (e.g., Chang et al., 1987; Chang, Foster, & Rango,

1991; Armstrong & Brodzik, 2001) have noted that night time SWE es-
timates are more reliable than those taken during the day, as liquid
water in the snowpack drastically alters the Tb gradient used for esti-
mating SWE. However, most studies use only one of the descending or
ascending orbits, depending on the location of their study areas and
hence the time of satellite overpass. We instead choose to measure
solar altitude on a point-by-point basis, to ensure that all of our
measured Tb values occur when the sun is below the horizon. While
90 + % of our points are derived from the descending orbits, we are
also able to include some additional points from the ascending orbits
during short periods of the year.

2.6.2. Scanline position
To examine the impact of satellite look angle on SWE and Tb values,

we take the index position (position along the scanline) of each mea-
sured data point, and normalize it by the length of the scanline (number
of captures). As each satellite captures a different swathwidth, and thus
number of points along a scanline, this allows us to normalize our
scanline positions across satellite platforms. We then subset our data
into quartiles to investigate possible bias derived from satellite look
angle (i.e., Quartile 1 refers to the first 25% of the scanline, cf. Fig. 5).

As can be seen in Fig. 5, Tb10v, Tb18v, and Tb36v remain relatively con-
stant across all scanline positions. While there are some differences
between each quartile, these impacts are not consistent across the

Fig. 3. Characteristic example of raw PM data points and their ellipsoidal geographic extent in NW India (cf. Fig. 1). (A) One month of data from the SSMI (yellow, n = 42) and AMSR-E
(black, n=188) satellites; (B) SSMIS (purple, n=196) andGPM(turquoise, n=131). AMSR2not shown, as the footprint size and density is comparable to AMSR-E.We show9-year 95th
percentile SWE volume from the AMSR EASEgrid as a background image to elucidate the 10-fold southwest-to-northeast SWE gradient in this area. Gray lines indicate international
borders, black lines show the 4-km elevation contour. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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study area, and show no discernible topographic pattern. Hence, while
scanline position differences throughout a single-point time series
may have minor impacts upon SWE variability, these impacts are not
universal or constrained across many points, and thus are not consid-
ered a major factor in influencing SWE variability.

2.7. Topography

Aswith forest cover, topographic parameters have long been known
to impact Tb and SWE measurements (Mätzler & Standley, 2000;
Armstrong & Brodzik, 2001; Mizukami & Perica, 2012; Dong et al.,
2005). However, as many SWE algorithms have been calibrated over
wide, flat, and forested zones (e.g., Northern Canada, Siberia), the rela-
tionship between topographic parameters and SWE estimation remains
unconstrained.

Across all instruments, we see that relief and 95th percentile SWE
volume are spatially correlated (Fig. 6). It is not clear whether this rela-
tionship stems from regional weather patterns, precipitation capture in
complex terrain, or constructive interference in the PM spectrum over
complex terrain. However, it is clear that both SWE volume and
topographic parameters have impacts on SWE variability; examining
whether these two impacts are manifestations of the same uncertainty
in SWE measurements is outside the scope of this study.

3. Results

3.1. Linear regressions

To explore the significance of several topographic and land cover in-
dices on SWE variability, we performed a series of linear regressions on
an aggregate and by-instrument basis. For each of our 2500 randomly
chosen point locations, we extracted raw PM measurements within a
radius of ~10-km (0.1°), and derived measures of both bulk SWE and
clear-day SWE variability (defined as days where temperature does
not rise above 0 ∘C and there is b0.1-mm sensed precipitation) over
the entire time series, which we then compare to the topographic pa-
rameters of each point (Fig. 7, Tables 2 and 3). Additional Figures and
Tables for other topographic indices are available in the Supplement
(Figs. S2–6, Tables S1–4).

When long-term variability in the SWE time series is compared to
hillslope angle, we see significant (p b 0.05) results across all satellites
(Table 2). When examining the entire time series, there is intrinsic var-
iability in the SWE signal when snow falls between measurements. To
control for this, we examine the SWE signal variability over only clear
days. These results are also significant across all satellites, albeit with
different regression slopes. This implies that hillslope angle has a direct
influence on the reliability or consistency of SWE measurements, albeit
with differences in regression coefficient related to PM instrument, the

Fig. 4.Characteristic time series extracted for (76.1932°CE, 34.3335°CN, cf. Fig. 3, 2005–2009) in theNWHimalaya for theAMSR-Eplatform. (A) SWEbasedon theChang equation (Eq. (1))
(Chang et al., 1982) in mm, data from SSMI and (B) from AMSR-E, (C) SWE based on Forest Fraction (AMSR-E) algorithm (Eq. (2)) (Kelly et al., 2003), (D) SWE based on the AMSR-E
EASEgrid product (Tedesco et al., 2004). Black lines smoothed using a 21 data-point Savitzky-Golay filter (Savitzky & Golay, 1964), and used in (E) to calculate residuals of Chang
equation SSMI (solid line), AMSR-E algorithm (dashed line), and AMSR EASEgrid (dotted line), with respect to the Chang equation AMSR-E SWE estimates as shown in panel (B). Time
series shows generally strong agreement on the timing of SWE buildup and melt, but disagreements on SWE volume.
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length of the sensed time series, and the temporal coverage of the time
series. However, it is not clearwhether the increase in SWEvariability at
steeper hillslopes in our study region is due solely to topographic im-
pacts, or is also driven by regional weather patterns or other confound-
ing effects.

Linear regressions for other topographic and land cover variables
can be found in the Supplement (Tables S1–4). No other topographic in-
dices maintain an appreciable positive or negative relationship across
multiple satellites. We find, however, a significant correlation between
clear-day SWE variation and long-term wind patterns, as measured by
HAR 10-m wind speed (Table 3).

For mean, median, 25th, 75th, and 90th percentile long-term
DJF wind speeds, we see significant relationships, where consistently
low-wind areas (low 25th percentile wind speeds) exhibit higher
variance in SWE estimates (additional regression results available
in the Supplement, Tables S1–4). There are significant differences in
the regression slopes across different satellite platforms, in both
Tables 2 and 3. We attribute this to differences in data capture time,
data density, and the temporal range of the different satellite platforms.
These differences indicate that any blended or multi-instrument SWE
product must account for these differences to generate an accurate
SWE estimate.

Fig. 5. Impacts of scanline position across the 10, 18, and 36 V channels for AMSR-E data (76.1932°CE, 34.3335°CN, cf. Fig. 3), divided into quartiles based on distance from satellite (black
arrow indicates far to close range). SWE amount (left axis) in black, with raw 10 V (yellow), 18 V (blue), and 36 V (green) Tb values (right axis). All channels show impact of SWE buildup,
with largest impacts on the 36V channel, particularly in the springmelt periods. (For interpretation of the references to color in this figure legend, the reader is referred to theweb version
of this article.)

Fig. 6. (A)Multi-yearmaximal SWE, proxied by 95th percentile SWE volume, and (B) 50th percentile SWE volume, over the period 2000–2015, calculated from amerged dataset of daily
values across all sensors. 5-km radius topographic relief in background.
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4. Discussion

4.1. Multiple regression

To determine the relative impacts of several variables on clear-day
SWE variability, we set up a multiple regression, with clear-day SWE
standard deviation as the independent variable and maximal SWE vol-
ume, forest fraction, hillslope angle, relief, elevation and both 25th and
90th percentile DJFwind speeds as dependent variables. In this analysis,
we use 95th percentile SWE volume, calculated over the entire time se-
ries, as a proxy formaximal SWE volume (Table 4).While SWE variation
within a single PM footprint is likely to influence SWE variability, with-
out significant in-situ data these impacts are hard to quantify. In this
regression, we assume that some of the in-footprint variability is
proxied by both topographic relief and by wind speeds, which could
both impact the distribution of SWE within a single PM pixel.

We observe that forest fraction is the strongest control on SWE var-
iability (Table 4). This is followed by long-term 95th percentile SWE,
90th percentile DJF wind speed, 25th percentile DJF wind speed, hill-
slope angle, relief, and elevation. Interestingly, terrain slope has a ~10
times greater effect upon SWE variability than terrain relief does in
our study area (Table 4).

In our study region, there are relatively few geographic areas with
significant forest cover (cf. Fig. 2D). When a multiple regression is per-
formed only on points with b5% forest fraction (the majority of our
study area), the coefficients of regression for each of the other variables
are nearly identical, as can be seen in Table S6 of the Supplement. This
implies that forest fraction has very little impact upon the relationship
between SWE variability and the other variables used in the multiple
regression in HMA. We do not have enough sample points with dense
forest cover to provide statistically significant results for a similar
regression analysis on only those points with N5% forest fraction.

While forest fraction is a factor controlled for in modern SWE esti-
mation algorithms, wind speed, topographic slope, and maximal SWE
volume are not. These factors will all have impacts on SWE estimation,
and can help account for some of the uncertainty noted in SWE estima-
tion studies (e.g., Mizukami & Perica, 2012; Dai et al., 2015; Foster et al.,
2005; Tedesco & Narvekar, 2010). In particular, the sensitivity of SWE
variance to 95th percentile SWE implies that deep snow is still very dif-
ficult for PM SWE algorithms to estimate. Several studies have noted
that SWE estimation becomes far less reliable when SWE is N200-mm
(e.g. Vuyovich, Jacobs, & Daly, 2014; Clifford, 2010; Andreadis &
Lettenmaier, 2006; Tong et al., 2010; Dong et al., 2005). While both
the Tb10v and Tb18v signals will be impacted by snow surface tempera-
tures, several authors note that the Tb10v signal is less influenced
by deep snowpack than the Tb18v (e.g., Kelly, 2009; Derksen, 2008;
Tedesco et al., 2015; Tong et al., 2010).

This effect is particularly pronounced in regions where there is con-
stant or nearly-constant snow cover (e.g., Fig. 8). Throughout the year,
and in particular during the winter months, all three channels (Tb10v,
Tb18v, and Tb36v) are impacted by snow buildup, even though the
Tb10v and Tb18v channels are treated as a ‘bare-soil’ signal bymany algo-
rithms (e.g., Chang et al., 1987; Kelly et al., 2003; Pulliainen, 2006; Kelly,
2009; Takala et al., 2011; Mizukami & Perica, 2012; Savoie et al., 2009;
Derksen, 2008). This snow signal is captured by both the Chang equa-
tion (Fig. 8B2) and the AMSR-E SWE algorithm (Fig. 8B3), although it
is unlikely that either estimate properly captures the magnitude of
SWE. It is likely that those areas which see constant or nearly-constant
snow cover develop larger snow crystals, which interferemore strongly
with the Tb10v and Tb18v channels than fresh or seasonal snow. Howev-
er, without in-situ data, it is difficult to separate these two interacting
impacts.

While some point locations in our dataset see constant snow cover
(cf. Fig. 8), this effect is also visible in areas with seasonal snow cover

Fig. 7. Correlation between SWE variability (standard deviation, STD) and hillslope angle across all instruments and all sample points show in Fig. 1 (n = 2500). (A) Aggregate total
variability on y-axis and (B) clear-day variability on the y-axis, with regression lines and p-values on each. Individual regression results available in Table 2.

Table 2
Slopes of regressions against hillslope angle (n = 2500), including p-values, t-values, and 95% confidence intervals (CI). Total individual points (all days/clear-day): All Satellites
(30,865,102/14,804,414), SSMI (2,224,350/1,586,970), SSMIS (4,089,875/2,786,589), AMSR-E (15,302,564/7,284,209), AMSR2 (6,660,429/2,678,470), GPM (2,587,848/468,176).

Metric All satellites SSMI SSMI/S AMSR-E AMSR2 GPM

All-day slope 0.168 0.491 0.359 0.17 0.45 0.322
All-day slope p-values 0.00036 2.92e-109 4.5e-69 0.0261 4.63e-55 1.42e-28
All-day slope t-values 3.57 23.4 18.1 2.23 16 11.2
All-day slope CI 0.0905–0.245 0.457–0.526 0.327–0.392 0.0443–0.296 0.404–0.296 0.274–0.369
Clean-day slope 0.311 0.141 0.463 6.64 0.458 0.109
Clean-day slope p-values 5.43e-07 0.031 1.94e-108 9.83e-91 9.74e-75 1.42e-28
Clean-day slope t-values 5.02 2.16 23.3 21.1 18.9 1.24
Clean-day slope CI 0.209–0.412 0.0334–0.248 0.43–0.495 6.12–7.16 0.418–7.16 −0.0352–0.252

Bold values indicate statistically significant results (p b 0.05).
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(cf. Fig. 5). Those points with constant deep snow cover are likely to
weaken the relationship between maximal SWE depth and SWE vari-
ability by lowering the possible range of SWE values. Despite the poten-
tial for SWE signal saturation at high snow depths, we still see a strong
positive correlation between 95th percentile SWE and SWE variability.

Both 90th and 25th percentile DJF 10-m wind speeds show strong
impacts in our multiple regression. We attribute this effect – which is
not consistent across all satellites – to wind-blown snow redistribution.
Areas of highwind are typically topographically complex, and seewind-
blown snow redistribution mostly in the form of avalanches which do
not travel much further than the extent of a single PM pixel. These re-
gions typically see more annual snow as well, which could confound
the wind signal. However, low-wind areas, which correlate with large,
flat regions in our study area, could see snow redistribution over a
very large area, especially if there are few windbreaks.

4.2. Spatial distribution of uncertainties

Based on ourmultiple-regression analysis,we have developed amap
showing the distribution of SWE uncertainty throughout our study area
(Fig. 9). This is based on topographic parameters, HARwind speed, land
cover (MOD12Q1), and long-term 95th percentile SWE estimates de-
rived from daily AMSR-E EASEgrid SWE measurements (2002−2011)
(Tedesco et al., 2004), and does not include any uncertainties intro-
duced by differing algorithms or ‘instantaneous’ ground conditions,
such as precipitation or snow recrystallization. We use the AMSR-E
EASEgrid to generate our SWE volume proxy as it covers the whole
study area with a continuous surface at a comparable spatial resolution
to the other input datasets.

As can be seen in Fig. 9, SWE uncertainty is strongly correlated with
complex topography, as has been proposed in previous publications
(Mizukami & Perica, 2012; Tedesco & Narvekar, 2010). However, the
multiple regression also implies that topographic complexity is not
the only controlling variable. For example, the north-central portions
of the Tibetan Plateau, while topographically flat, see relatively high
SWE variation due to the combination of higher snowfall totals than
the south-eastern areas of the Plateau and more wind-related snow re-
distribution. These estimates can provide a first-order assessment of
SWE measurement reliability throughout the world, and particularly
in regions where ground-truth data is sparse. While a generalized

uncertainty map combining the results of all of the satellite time series
would be desirable, the multiple regression results on a by-satellite
basis (available in the Supplement, Tables S5–16) indicate that there
are important differences in regression coefficients across satellites.
When considered in aggregate, these differences dilute the uncertainty
signatures of each individual satellite. As each satellite responds slightly
differently to topographic, land cover, and climatic factors, in both pos-
itive and negative directions, the aggregate regression encompasses a
wider spread of uncertainties, and thus shows the least significant cor-
relations (see Supplement, Figs. S10–15 and Tables S5–16). The differ-
ent responses of each satellite are likely due to differences in spatial,
temporal, and spectral resolution and instrument hardware.

Despite these differences in uncertainty, all five satellites are able to
track the patterns of SWE over our multi-year time series (cf. Fig. 10).
The largest differences between SWE amounts on an annual basis
come when SWE amounts are greatest – for example in 2007 and
2010 – and when the SWE time series does not encompass the entire
3-month DJF period – for example in 2002 (cf. Fig. 10).

In our analysis, spectral resolution has the least influence on differ-
ences in SWE volume uncertainty across satellite platforms, as we use
only two bands (Tb18v and Tb36v) in our calculations of SWE. These
bands are present across all satellites, albeit with slight differences in
exact channel frequency (Table 1). These channel differences are con-
trolled for in the application of the Chang Equation (Eq. (1)), after
(Armstrong & Brodzik, 2001). Differences in the temporal range and
resolution of each satellite dataset could influence our calculated uncer-
tainties, particularly due to differences in snow cover during multiple
winter periods. For example, AMSR-E (2002–2011) has several different
winters of data, while GPM (2014–2015) only has data from a single
completewinter. However, there is high variation in both the regression
coefficients and p-values when the multiple regressions are performed
on a year-by-year basis. The coefficients tend to oscillate around a
multi-year norm, indicating that while the multi-year regressions pro-
vide the long-term mean coefficients, the highest significance uncer-
tainty signal will come from those data with a shorter observation
period, such as GPM.

As the spatial resolutions of GPM and AMSR-E/2 are higher than
those of SSMI/S (e.g., Fig. 3), there is less intrinsic terrain variability in
a single GPM/AMSR pixel than in a single SSMI/S pixel. This implies
that, all other factors being equal, the SWE estimates from GPM and

Table 3
Slopes of regressions against 14-year 25th percentile 10-m DJF Wind Speed (n = 2500), including p-values, t-values, and 95% confidence intervals (CI). Total individual points (all days/
clear-day): All Satellites (30,865,102/14,804,414), SSMI (2,224,350/1,586,970), SSMIS (4,089,875/2,786,589), AMSR-E (15,302,564/7,284,209), AMSR2 (6,660,429/2,678,470), GPM
(2,587,848/468,176).

Metric All satellites SSMI SSMI/S AMSR-E AMSR2 GPM

All-day slope −1.27 −0.28 −0.565 −1.37 −0.525 −1.11
All-day slope p-values 1.57e-06 0.0327 2.03e-06 0.00146 0.00161 1.54e-11
All-day slope t-values −4.81 −2.14 −4.76 −3.19 −3.16 −6.78
All-day slope CI −1.71 to −0.838 −0.495 to −0.0643 −0.76 to −0.37 −2.08 to −0.662 −0.798 to −0.662 −1.38 to −0.842
Clean-day slope −1.12 −1.57 −0.306 13.9 −0.693 −1.64
Clean-day slope p-values 0.00143 7.29e-06 0.013 5.86e-100 3.64e-06 1.54e-11
Clean-day slope t-values −3.19 −4.49 −2.48 22.2 −4.64 −2.86
Clean-day slope CI −1.69 to −0.541 −2.14 to −0.995 −0.508 to −0.103 12.9–15 −0.939-15 −2.59 to −0.696

Bold values indicate statistically significant results (p b 0.05).

Table 4
Coefficients of Multiple Regressions for GPM (n= 2500), including p-values, t-values, 95% confidence intervals (CI), and percentage of total variance.

Metric Coefficient p-value t-value Confidence interval Percent of total

Forest Fraction 2.97 0.206 1.27 −1.63–7.57 75.8%
95th Percentile SWE 0.306 0 206 0.303–0.309 7.82%
90th Percentile Wind 0.22 2.13e-08 5.62 0.143–0.297 5.62%
25th Percentile Wind −0.213 0.000953 −3.31 −0.34 to −0.087 5.44%
Hillslope Angle 0.205 6.84e-23 9.95 0.165–0.246 5.24%
Relief −0.00236 9.93e-17 −8.36 −0.003 to −0.002 0.0603%
Elevation −0.00224 4.86e-317 −44.4 −0.002 to −0.002 0.0572%

Bold values indicate statistically significant results (p b 0.05).
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AMSR-E/2 will be of a higher quality (cf. Fig. 9, and Figs. S10–15 in the
Supplement). As these sensors also gather additional spectral frequen-
cies, they are also suitable for more complicated SWE algorithms, such
as those shown in Eqs. (2)–(4).

4.3. Discussion of additional SWE uncertainties

The above regressions have noted some possible topographic, land
cover, and weather-related SWE measurement uncertainty sources.
However, there are several other possible uncertainty sources, which
have been accounted for to varying degrees in previous work.

The first possible source of uncertainty, which is difficult to control
for, is inter- and intra-sensor biases. Some studies, such as (Dai et al.,
2015), have identified SWE biases between the various satellites of
the SSMI/S constellation. Intercalibration of multiple satellites is chal-
lenging due to the dearth of wide-scale and long-term SWE ground
measurements. Additionally, the Tb18v channel present on all of the
studied satellites is considered as a clean soil signal from the snow-
covered earth in the Chang equation. However, the influence of SWE
buildup can be seen clearly in this channel, for example in Figs. 5 and
8. While modern algorithms also take advantage of the Tb10v signal for
deep-snow estimation (e.g., Kelly, 2009; Tedesco & Narvekar, 2010;
Derksen, 2008), Fig. 8 also shows SWE influence on that channel.

Therefore, there will be inherent bias in any SWE estimation, especially
in deep-snow situations.

Previous work has also implicated high relief areas as low SWE con-
fidence areas (Mätzler & Standley, 2000; Tedesco & Narvekar, 2010).
This is due to relief not only influencing the size of the satellite footprint
through shadowing, but also changing the relative satellite look angle
and angle of incidence for polarization. Our results indicate that topo-
graphic parameters do indeed influence SWE reliability, although it is
not clear whether overshadowing, satellite look angle, polarization
changes, or a secondary impact of topography such as precipitation cap-
ture are most responsible for changes in SWE reliability. Additionally,
terrain slope has a much larger impact upon SWE variability than
terrain relief does in our study area (Table 4).

5. Conclusion

This study presents a multi-parameter uncertainty assessment of
passive microwave (PM) snow-water equivalent (SWE) estimation
using the Special Sensor Microwave/Imager (SSMI), Special Sensor
Microwave Imager/Sounder (SSMIS), Advanced Microwave Scanning
Radiometer - Earth Observing System (AMSR-E), AMSR2, and Global
Precipitation Measurement (GPM) satellites. We identify and assess a
suite of possible uncertainty sources in the raw PM data, as well as in
the SWE estimations from multiple overlapping time series. We use

Fig. 8. (A) Landsat 8 Image (Oct 5, 2015, LC81450392015276LGN00), showing a point location in the western Himalaya (79.418247, 30.911184) surrounded by glaciers. (B1) Raw 10 V
(yellow), 18 V (blue), and 37 V (green) signal; (B2) Chang equation SWE estimates, with AMSR-E data; (B3) AMSR-E algorithm SWE estimates; (B4) AMSR EASEgrid SWE estimates.
Illustrates how persistent snow cover can disrupt the 10 V signal. SWE is also likely significantly underestimated in locations such as this with glacial ice or deep snow cover.

Fig. 9. Spatial distribution showing SWE uncertainties from PM data using (A) the multi-parameter estimated using regression coefficients from the GPM satellite (one year of data,
Table 4). (B) Percentage difference between the uncertainty of the SSMIS satellite and the uncertainty of the GPM satellite (100% indicates equal uncertainty in both satellites, lower
values indicate SSMIS is better) and black arrow in the legend indicates direction from high to low uncertainty. In general, the GPM satellite shows lower uncertainty across the entire
study area. Additional comparisons available in the Supplement (Figs. S10–15).
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these uncertainty sources to develop a multi-parameter estimation of
inherent unreliability in SWE estimates across High Mountain Asia, in-
cluding the Tibetan Plateau and the Himalaya. We find that forest frac-
tion is the strongest control on SWE variability, followed by long-term
maximal SWE volume, wind speed, and hillslope angle. Elevation, relief,
and terrain aspect show very low influence on SWE variability. While
forest cover and topographic parameters have been integrated into
many SWE algorithms, wind speed and long-term maximal SWE vol-
ume have not. The results derived here show that wind-redistribution
of snow can have impacts on SWE, especially over large, flat, areas.
The uncertainty map developed here provides a first-order approxima-
tion of SWE-estimate reliability for much of High Asia, and implies that
high-fidelity SWE estimates can be produced for a range of elevation
zones and terrain types.We find that each individual satellite shows dif-
ferences in SWE variability, with the more modern sensors (GPM,
AMSR-E/2) providing the most robust SWE estimates, expressed in
this analysis as low SWE variability.

Appendix A. Supplementary data

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.rse.2016.03.037.
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